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Abstract

Here is introduced the concept of Riemann- Liouville frac-
tional radial derivative for a function defined on a spherical shell.
Using polar coordinates we are able to derive multivariate Opial type
inequalities over a spherical shell of #, N > 2, by studying the topic
in all possibilities. Our results involve one, two, or more functions.
We produce also several generalized univariate fractional Opial type
inequalities many of these used to achieve our main goals.
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1 Introduction

This work is motivated by articles of Opial [11], Bessack [6], and Anastassiou-
Koliha-Pecaric [4], [5], and Anastassiou [2], [3]. We would like to mention

Theorem A (Opial [11], 1960) Let ¢ > 0 and y(z) be real, continuously
differentiable on [0, ¢|, with y(0) = y(c¢) = 0. Then

c , c [ / )
[ ar < § [ ) as

Equality holds for the function



y(x) = x on [0,c/2]
and
y(z) =c—x on [c/2,].

The next result implies Theorem A and is very useful to applications.
Theorem B (Bessack [6], 1962) Let b > 0. If y(x) is real, continuously
differentiable on [0, b], and y(0) = 0, then

b . b b ,
/0 ly(z)y'(z)|dz < 2/0 (y (x))zdx.

Equality holds only for y = mz, where m is a constant.

Opial type inequalities usually find applications in establishing unique-
ness of solution of initial value problems for differential equations and
their systems, see Willett [16]. In this article we present a series of vari-
ous Riemann- Liouville fractional multivariate Opial type inequalities over
spherical shells. To achieve our goal we use polar coordinates, and we intro-
duce and use the Riemann- Liouville fractional radial derivative. We
work on the spherical shell, and not on the ball, because a radial derivative
can not be defined at zero. So, we reduce the problem to a univariate one.

Consequently we use a large array of univariate Opial type inequali-
ties involving generalized Riemann- Liouville fractional derivatives;
these are Riemann- Liouville fractional derivatives defined at arbitrary an-
chor point a € R. So we present also a very large set of generalized univari-
ate Riemann- Liouville fractional Opial type inequalities transferred from
earlier ones, proved at anchor point zero for the standard Riemann- Liou-
ville fractional derivative. In our results we involve one, two, or several
functions. But first we need to develop an extensive background in three
parts, then follow the main results in three subsections.

2 Background- I

Here we follow [13], pp. 149-150 and [14], pp. 87-88. Also here R, N > 1
denotes the N-tuple of reals & and N denotes the natural numbers. Let
us denote by dz = Agn(dz) the Lebesque measure on RV, N > 1, and
SN=1.= {2 € RN : |z| = 1} the unit sphere on RV, where | - | stands for
the Euclidean norm in ®Y. Also denote the ball



B(0,R):=={z e RV : |z| < R} C RN, R>0,

and the spherical shell

A:=B(0,Ry) — B(0,R1), 0< Ry < Rs.

For z € RN — {0} we can write uniquely x = rw, where r = |z| > 0,
and w =2 € SN~ |w| = 1. Clearly here

RY — {0} = (0,00) x SN,
also the map
RV — {0} —» SN @(x):m

is continuous.

Also A = [Ry, Ra] x SN~1. Let us denote by dw = Agn-1(w) the surface
measure on S™V~! to be defined as the image under ® of N - Apn restricted
to the Borel class of B(0,1) — {0}. More precisely the last definition has as
follows: let A € SN~! be a Borel set, and let

A={ru: 0<r<1, uec A} c R,

we define

Agn-1(A) = N - A (A).

Noting ®(rz) = ®(x), all > 0 and z € R — {0}, one can conclude
that

/ fo®(x)dr = ’I"N/ fo®(x)dx
B(0,r)—{0} B(0,1)—{0}

and, thus

N

/ fod(aydr =" F) Agn 1 (dw),
B(O,T’)—{O} SN—-1

for all f non-negative and measurable functions on (S =1, Bgnv-1), B stands
for the Borel class.
We denote by



27TN/2

wy = Agyv-1 (SN = /SN1 dw = T(N/2)

SN—l

the surface area of and we get the volume

N 9.N/2 N

so that
2w N/2
|B(0,1)| = NT(N/2)

Clearly here

wy(RY — RY) _ 2x"2(RY — RY)
N ~ NT(N/2)

Vol(A) = |A| =
Next, define
Y :(0,00) x SNTL RN {0}
by ¥ (r,w) := rw, 1 is one to one and onto function, thus

(r,w) =9~ () = (Jz], ()

are called the polar coordinates of x € R — {0}.
Finally, define the measure Ry on ((0, 00), B(o,oo)) by

Ry(T) = / rNldr, any T € B0,00)-
r

We mention the very important theorem

Theorem 1 (see exercise 6, pp. 149-150 in [13] and Theorem 5.2.2 pp.
87-88 of [14]) We have that Agn = (Ry X Agn-1) 09p~! on By _103-

In particular, if f is a non-negative Borel measurable function on (iRN , B%N),
then the Lebesque integral

. f(z)dx = /(O’OO) N1 </3N1 f(rw)ASN_l(dw)> dr

= / (/ f(rw)rN_ldr> Agn—1(dw). (1)
SN—1 (0,00)

Clearly (1) is true for f a Borel integrable function taking values in R.
Using the facts that:



i) the Lebesque measure of a Lebesque measurable set K equals to the
Lebesque measure of a Borel set (i.e there exist M an F, and T an
Gs) sets: M C K C T with Apn (K) = Apnv (M) = Apn (1), see [12],
p. 62), and

ii) for each g Lebesque measurable function, there exists an f Borel
measurable function such that g = f a.e., see [13], p. 145, we get
valid that (1) is true for Lebesque integrable functions f : RY — .

We give the important
Proposition 2 Let

f:B(0,R) >R, R>0,

be a Lebesque integrable function. Then

[ e [ ([C o) an o)

Proof
Call

f(x), € B(0,R),
F(x):=
0, =R —B(0,R).

Then apply (1) for F' to get easily (2). m
At last here, we give the main tool for writing this article.
Proposition 3 Let

frA-R

be a Lebesque integrable function, where

A= B(O,RQ) — B(O,Rl), 0< R1 < Rs.

Then

Proof
Apply (1) for



f(x), z€ A
F(x):=
0, zeRV - A,

then (3) is valid. m
We will also need the following well-known result.
Proposition 4 Let

fila,b] = R,
be a Lebesque integrable function. Then

b b—a
/ f(2)dz = ; f(t+a)dt. (4)

So if fu(t) :== f(a+t), the translation of f, then
b b—a
/ fez= [ e (5)

3 Background- 11

Here we define the Riemann- Liouiville fractional derivative we will be
using.

Definition 5 (see [4], [5], [7]) Let @ > 0. For any f € L1(0,z); = > 0,
the Riemann- Liouiville fractional integral of f of order « is defined
by

() &) = F / (s — 0 f (), (6)

all s € [0,z], and the Riemann- Liouiville fractional derivative of f
of order a by

D)= i (1) [ om0 @

where

[-] is integral part.



In addition, we set

Df:=f:=Jof,
J_of =D%f, if a>0,
D™ f:=J.f, if 0<a<]l.
If « € N, then
Def = [

the ordinary derivative.
Definition 6 (see [7]) We say that f € L1(0,x), has an L., fractional
derivative D f in [0, z] if z > 0, iff

D kfeC(0,x]), k=1,...,m:=[a] +1; a >0,
and
D1 f € AC([0,2]) (absolutely continuous functions),
and
DOf € Loo(0, ).

We mention
Lemma 7 (see [7]) Let

f>a>0,
let
ferLi(0,z), >0,
have an Ly, fractional derivative DPf in [0, 2] and let
DPEf(0)=0 for k=1,...,[8] +1.

Then

all s € [0, z].



Clearly here

Def € AC([0,z]) for f—a>1

and
Def € C([0,z]), for B—a € (0,1),
hence
DYf € Lo (0,2),
and

Daf € Ll(O, l‘)

Next, we define the generalized Riemann- Liouiville fractional
derivative with arbitrary anchor point a € R, see [4].
Definition 8 Let v > 0, define

(D2 f)(s) = (D fa)(s —a), s=>a, (9)
for v = 0 both sides equal to f(s), and for v =n € N we easily get that

(D f)(s) = f(s),

the ordinary derivative. Clearly here

(Daf)(z+a) = (D"fa)(2). (10)

We will be using p(s) and DY f(s) in Loo(a,x), x > a, a,x € R. In that
case by using (5) we obtain

/ " P W) (D) () dy = /0 b ) (DU f) (2)d, (11)

alla <w <z, a, v € R, which identity we will use a lot in this article.
Our initial intention is to transfer Riemann- Liouiville fractional Opial
inequlities, [2], [3], [4], [5] applied to f, over [0, w — a], for f over [a,w] and
use the generalized Riemann- Liouiville fractional derivative. For that we
observe that
Lemma 9 f € Li(a,w) iff f, € L1(0,w — a), where w > a, a,w € R;

fa(t) := fla+1t).



Proof
We see that

[ iea= [ il

]
We need
Lemma 10 Let

F(s):=f(s—a), ae®R

be fixed.
Here f:[0,w — a] — R, where w > a and F : [a,w] — R. Then

(i) F € C([a,w)]) iff f € C([0,w — a]),
(ii) F € Loo(a,w) iff f € Loo(0,w — a),
(iii) F € AC([a,w)]) iff f € AC([0,w — a]).

Proof
It is based on the fact that the map g : [a,w] — [0,w — a], such that
g(s) := s — a is one to one and onto.

(i) (=) Let F continuous, and let z,, z € [0,w —a] : =z, — z, ie.
Zn+a— z+a, here z, +a, z+a € [a,w].

Hence F(z, +a) — F(z+ a), i.e. f(z,) — f(2), proving continuity of
f

(<) Let f continuous, and let
Sp — 8 Sp, S € [a,w] <= s, —a, s—a€[0,w—al,
and
Sp—a—s—a.

Hence f(s,—a) — f(s—a),i.e. F(s,) — F(s). That is F is continuous.
(ii) We see that

[E(s)l = 1f(s = a)] < [[flloo, 0.0—al

a.e. in s € [a,w].
Hence



||F||oo, [a,w] < ||f||oo, [0,w—a]-

Also

[f(s = a)] = [F(s)] < [ Fllo, faul

a.e. in s € [a, w].
So that

”f”oo, [0,w—al] < ”FHOO, la,w]*

Le.

HF‘HOO7 l[a,w] — HfHoo, [0,w—a]>

proving the claim.
(iii) (=) Let F' be absolutely continuous, i.e. ¥ € >0 3 ¢ > 0 such that

whenever (a1, b1),..., (an, b,) are disjoint open subintervals of [a,w], then
n n
> bi—ai)<d = Y |F(b)— Fla)| <e.
i=1 i=1
Here (a; —a,b; —a) C [0,w —al], : =1,...,n and also disjoint.

Rewriting the last statement we have

n

Y (bi—a)=(ai—a)) <6 = Y |f(bi —a) — flai—a)| <e,
i=1

i=1 =
that is f is absolutely continuous.

Notice that any open subinterval (a},b}) C [0,w — a] has the form (a; —

a,b;j—a), where (a;,b;) C [a,w], all i=1,...,n;bya,=a;—a, b, =b—a.
(<) Assume now f is absolutely continuous, i.e. Ve >0 3 > 0: for
any (a1,b1),..., (an,by) that are disjoint subintervals of [0, w — al, then
Y obi—ai) <6 = Y 1f(b) — fla)| <e.
i=1 i=1

The last statement is rewritten as

Ve>036>0: (a1 +a,bi+a),...,(an+a,b, +a) C [a,w)],

10



then are disjoint open subintervals, then

n

D ((bi+a)—(ai+a)<d = > |F(bj+a)— F(a; +a)| <e,
i=1 =1

f(b) = F(bi +a), f(a;) = F(a;+ a).

Therefore F' is absolutely continuous.

Notice again here that any open subinterval (aj,b;) C [a,w] has the

form (a; + a,b; + a), where (a;,b;) C [0,w —a] all i=1,...,n; by a, =
a; + a, b;:bi—i-a. |

We need

Lemma 11 Here a < w, a,w € R. Then

p(s) € Loo(a,w) iff 6(2) :=pla+ z) € Loo(0,w — a).
In fact

H6||oo, [0,w—a] = ||p(S)Hoo, [a,w]*

Proof
Let £! stand for the class of Lebesque measurable sets. Assume p(s) is
Lebesque measurable on [a,w]. Then for any ¢ € & we have

L ([a,w]) 3 {z € [a,w] : p(z) < ¢} = {a+(z—a) € [a,w] : plat+(z—a)) < c} =
a+{(z—a) € [0,w—a] : pla+(z—a)) < c} =at+{u € [0,w—a] : platu) < c}.
ILe.
{uel0,w—a]l: d(u)<c}={uel0,w—al: platu)<c}=

—a+{z € [a,uw]: p(x) <c}e L (0,w-a]),

for all ¢ € R. Hence 0 is Lebesque measurable on [0, w — a].
Assume now that § is Lebesque measurable on [0,w — a]. Then for any
¢ € R we have
LY[0,w—a])3{z€[0,w—a]: §(2)<c}=

{ze0,w—a]l: plat+z)<c}={(a+2)—ac[0,w—a]: pla+z)<c}=

11



—a+{(a+2)€a,w]: pla+z)<ct=-a+{z€law: p(x)<ch
Le.

{r€la,w]: plr)<cl=a+{z€[0,w—a]: §(z)<c}eL(a,w]),

for all ¢ € R. Hence p(s) is Lebesque measurable on [a,w]. We do have
that

0(2)] = |p(a + 2)| < [Ip(s)llco, (a,u;
a.e. z € [0,w — a]. Hence
H5||c>o7 [0,w—a] < Hp(S)Hoo, [a,w]"
Also we have
[p(a+2)| = 16(2)] < [|0llso, [0,0-a]»
a.e. z € [0,w — a]. Hence

Hp(s) ”oo,[a,w] < H(SHOO,[O,U)—G]?

proving the claim. m

We continue with

Definition 12 We say that f € Li(a,w), a < w; a,w € R has an Ly
fractional derivative D f (6 >0) in [a,w], iff

1) D% *feCla,w]), k=1,...,m:= [ +1

2) D' f € AC([a, w)),
and
3) DPf € Loo(a,w).
Based on Lemma 9, 10, the last Definition 12 is equivalent step by

step to
Definition 13 We say that

fa(s) = fla+s) € Li(0,w — a)

12



has an L., fractional derivative D?f, in [0,w—a], 3> 0, w > a; a,w €
R, iff

1) DP*f, e C(0,w—a]), k=1,...,m:=[8] +1

2) D77 f, € AC([0,w — a)),
and
3) DPf, € Loo(0,w — a).
Definition 14 Here we define for s > a,
D" f(s) = Dy~ WD p(s) := DP W £, (s — a)
= J(p1+1-p)Jals —a) =

; S_as— a BI-8f(a
F([ﬁ]+1_5)/0 (s = (a+1)"""fa+t)dt, (12)

where f € Li(a,w), a < w; a,w € R. Notice that
0<[fl+1-p<1.

If f € Lo(a,w), then

Bom p(g) — “(s — BB Fpat.
D) = gy [ (= 0 e

a

Remark 15 Notice that

(Dg—kf) (a) = D% £,(0), for k=1,...,[3] + L (13)

Based on Lemma 7 we get

Lemma 16 Let 8 > a > 0 and let f € Li(a,w) (iff f, € L1(0,w —
a), a < w; a,w € R) have an Lo, fractional derivative DS f in [a, w] (iff f,
have an Ly, fractional derivative DPf, in [0,w — a]), and let

(Dg—kf> (@ =0, k=1,...,[8] +1

(which is the same as D% £,(0) =0, for k=1,...,[3] +1).
Then

13



() D*4s) = =y |, =0 D R

all s € [0,w — al.

(i) D) = ey [ (=0 DO (19

all a < s <w.
Clearly here

D f isin AC([a,w]) for f—a>1

and
Dg fis in C(la,w]) for B —a € (0,1),
hence
D7 f € Loo(a,w)
and

DS f e Li(a,w).

Likewise for D®f, on [0,w — a].
Proof
By Lemma 7, and by Definition 8 and (14), we have

(14) 1

(D21) () = (D £) (=) 2 s [ ()= (D2 ) (it =

F(ﬁl_a) /Os—“(s —(t+ a))ﬁ—a—l (Dgf) (t +a)dt

(i)p(gl_ a) /as(s — )t (fo> (t)dt, (16)

proving (15). m

14



4 Background- III

We make

Remark 17 Let f € Li(a,w), where a < w; a,w € R. Let >0, a <

s < w, by Definition 8 we have

(D2F) (9) = (i)m /D s a— Bl g, (17)

D(m )
where
m =[] + 1.
If 3 =0, then
(DEr) (s) = ()
Let now

F e Ll(A) =14 ([Rl,RQ] X SNfl) .

For a fixed w € SV, define

where

x € A:= B(0,R2) — B(0, Ry),
0< Ry <r <Ry r=]|z|, wzfeSN_l.
By Fubini’s theorem
Juw € Ly ([R17R2]>B[R1,R2]7RN) )

for Agv-1- almost every w € SN~1,
Call

K(F)={we S"": gy ¢ L1 ([R1, Ra), B, ry)» Bn) }
={we SN F(-w) ¢ Ly ([Ry, Ra), Bir, r,)» Rv) }-

That is

15



Agn-1 (K(F)) = 0.
Of course,
O(F) := [Ry, Ry] x K(F) C A
and
A (O(F)) = 0.

By (17) then we have

1 d\" [ 4
(szlgw> (r) = Tm—73) (dr) /O (r =Ry =)™ 7 gy (Ry + t)dt,
(19)
where
B>0, m:=[B]+1, re€[Ry, Ryl
If 6 =0, then

(szlgw> () = gu(r).
Formula (19) is written for all w € SV — K(F). We set
(Dglgw> (r)y=0, Vwe K(F),Yre€[Ry,Ry], any 5 > 0.
The above lead to the following definition.

Definition 18 Let 5 >0, m:=[3] + 1, F € L1(A), A is the spherical
shell. We define

o ()" Jo R Ry — )y F((Ry + Hw)dt,

alglF(x) — for we SN — K(F),
orp
0, forwe K(F),
(20)
where

t=rweA, re[Ry,Ry, we SN

16



If 8 =0, define

a,, F(z)
We call
dp F(x)
orP
the Riemann- Liouville radial fractional derivative of I of order
0.
We make

Remark 19 If f € Ly (a,w), then (17) becomes

(020) ) =t () [ -0 a2

B >0, m:=[p]+1, s€ [a,w]. If Fis a Lebesque measurable function
from A into ® and bounded, i.e. there exists

M*>0: |[F(z)| < M*, all x € A,
then of course
FeLi(A).
Clearly then
9w (r)] < M,

all 7 € [Ry, Ro) and all w € SN~
Therefore (19) becomes

(Phaw) )= 10— <c7>m

where

/ ' (r — )™ P~ Lg,(t)dt, (22)

Ry

m = [ﬂ] +1, ﬂ > 0, r e [Rl,Rz],

for all w € S¥=1 — K(F). In this last case, (20) becomes

17



F(ml—ﬂ) ()" Ji, (r =)™ PR (tw)dt,

81[351F(x) _ for we SN=1 — K(F),
orP
0, forwe K(F),
(23)
where
r=rw€A, re[Ry,Ry, we SNL
We need
Theorem 20 Let 5> a >0 and F' € Li(A). Assume that
ap F()
—1 - ¢ Ly(A).
orP (4)

Further assume that DglF(rw) takes real values for almost all r €
[R1, Ry, for each w € SV~1, and for these

| DY, F(rw)| < M
for some M7 > 0.

For each w € SVN~! — K(F), we assume that F(- w) have an Lo, frac-
tional derivative DglF (+ w) in [R1, Rs], and that

Dy F(Riw) =0, k=1,....[8] + 1.

Then
o, F(z) 1 r
— (D2 F _ _ \p—a—1 Dﬂ F
T = (DR F) 0 = 55 /R =77 (D5, ) (i
(24)
true Vo € A, ie. true V r € [Ry, Re] and V w € SV~1,
Here
(D%, F) (- w) is in AC([R1, Rs]) for B—a>1
and

( %1F) (- w) is in C([R1, Ra]) for B —a € (0,1),

18



YV we SN-1.

Furthermore
0% F(x)
In particular, it holds
1 T
Fm:qu:/ r— )51 (D F) (tw)dt, 25
(@) = Flrw) = g5 [ =077 (D, F) (o) (25)

Vre[R,Re],Vwe SN - K(F); x =rw, and
F(- w)is in AC([Ry1, Ra]) for f>1
and
F(- w) is in C([R1, R2]) for g € (0,1),
Vwe SNt - K(F).

Proof
Here we observe that for each w € SV~! — K(F), we have

F( w) el ([RlvRZ]vB[Rl,RQ]aRN) .

By our assumptions and Lemma 16, we have

(D3, F) (rw) = F(Bl—a) /R (r— 0/ 1D0 F(tw)dt,  (26)

V7 € [Ry,Rs], Vw e SN1 — K(F), for > o > 0. So initially proving
(25) by setting a = 0 in (26). Here

D% F(- w) is in AC([R1,Ry]), Vw e SN — K(F), B—a>1,
and
D% F(- w) is in C([Ry, Ra]), for B —a € (0,1).
Formula (26) for a > 0, is true V r € [Ry, Rg] and ¥ w € S¥~1, and
(D%, F) (- w) is in AC([R1, Rq]), YV w € SN g—a>1

and

19



D F(- w) is in C([Ry, Ry]), for B—a € (0,1).
So proving (24). Fixing r € [R1, Rs], the function
8e(t,w) = (r — £)°~71Dy, F(tw)

is measurable on

([Rl,r] X SN_I,E[RN,} X ESNA) .

Here B[th] x Bgn-1 stands for the complete o- algebra generated by

B[RM] x Bgn-1, where Bx stands for the completion of Bx. Then we get
that

Lo (et aw= [ ([ == t0, pawar) aw <
85 F(x) "
v 7 _ \B-a-1 _
LY, s (o ([ a) ) =

H O, F () H 2aN/2 1\ (r— Ry)7® _
orP o0, ([R1,/]xSN-1) \ T'(IN/2) B—-a) —

H oy, F(x) ” < o N/2 ) (Ry — Ry)P@
orP o0, A \ I'(N/2) (68— a)

< 00. (28)

Hence §,(t,w) is integrable on

([Rl,r] X SNfl,E[Rlﬂ X ESNA) .
Consequently, by Fubini’s theorem and (24), we obtain that
(D, F) (rw), 8> a >0,
is integrable in w over (SN~!, Bgn-1). So we have that

( %IF) (rw), B >a>0,

is continuous in r € [Ry, Rs] for each w € SV~!, and measurable in w €
SN=1 for each r € [Ry, Ry]. So, it is a Carathéodory function. Here

20



[R1, Ry] is a separable metric space and SV ! is a measurable space, and
the function takes values in R* = R U {£oo}, which is a metric space.
Therefore by Theorem 20.15, p.156 of [1],

(D%, F) (rw), B>a >0

is jointly (B[RhRﬂ X EsN—l)— measurable on [Ry, Ro] x SN~ = A, that is
Lebesque measurable on A. Indeed then we have that

(DR F) ()| € gy [ =077 | (DR F) ()|

D F( . o
H R1 ( u))Hoo7 [R17R2] (/ (7" . t)ﬁ_a_]_dt> < M1 (T —_ Rl)ﬂ
Ry

<
- L' —a) T Tf-a) (B-a)
(29)
My _
<o (Ry— R ™=
S T@—a+p 2R T
for all w € SN¥=1 and all r € [Ry, Ry). Le. we proved that
| (D§,F) (rw)] < 7 < oo, (30)
for all w € SN¥~1 and all r € [Ry, Ry]. Hence proving that
O, F(x)
—L—~ € Lo(4).
ore (4)

We have finished our proof. m

We have built the machinery to do Riemann- Liouiville fractional Opial
type inequalities on the spherical shell.

Now are ready to present our main results next.

5 Main Results

5.1 Riemann- Liouiville fractional Opial type inequalities
involving one function

‘We mention
Theorem 21 (see [4]) Let

1 1 .
-+ —=1with p,g>1
p q
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let
1
¥y20,v>y+1——
p
and
fELl(O7$)

have an Lo, fractional derivative DV f in [0, z], = > 0, such that

DI f(0)=0, forj=1,...,[v] +1.

Then
x T 2/q

[ 01 D91 < o) ([ 1001 (31)

where
) 2(rp+2)/p -
(e) = 21/4 D(r4+1) ((rp+1)(rp+2))"/? 32)

and

r=v—vy-—1 (33)

We transfer Theorem 21 to arbitrary anchor point a € ®. We present
Theorem 22 Let

1 1
—+ - =1 withp,qg>1,
P q
let
1
7207 ’U>’Y+177a
p
and
f € Ll (CL, :I;)
have an Lo, fractional derivative DY f in [a, x|, a, x € R, a < x, such that

DY f(a) =0, forj=1,...,[v] +1.

22



Then

2/q

/j |D] f(s)] |Dgf(s)lds < Qz — a) (/ yDgf(s)yqu) (34)

where Q as in (32).
Proof
By Lemma 9,

fa € L1(0,2 —a)

with Lo, fractional derivative DV f, in [0,z — a], see Definitions 12, 13.
Furthermore it holds, see (13),

D7 f,(0)=0, forj=1,...,[v] +1.

Therefore by (31) we have

r—

/0‘”0 |D7 fa(s)| |D” fa(s)|ds < Q(x — a) </0 ’ vaa(3)|qu> 2/!1' (35)

Using (10) we have

r—a

z—a 2
[ 1020 s 02 st < 06— ([ 1021 0 v aras)
By Lemma 16, we have that
D) f e AC(la,z]) forv—vy>1
and
D) f e C([a,z]) for v—~€(0,1).
Clearly then by Proposition 4 we get

/0 " D1f) s+ a)] | (D) (s + a)lds = / IDYF(s)] | (DF) (s)lds (36)

a

and
/ C (DS (s + a)ods = / "1 (D f) (s))7ds,
0 a
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notice here functions under right hand side integrations are integrable.
That is proving (34). =

We mention

Theorem 23 (see [4]) Let

v >y >0,
and let
f € Li(0,x)
have an Lo, fractional derivative DV f in [0, z], = > 0, such that
D7 f(0)=0, forj=1,...,[v] +1.

Then

/0 [DYf(s)] |Df(s)|ds < Qu() esssupyeoq [Df(s)P,  (37)

where
ZL‘T+2
Q == =v—v—1 38
@)= foggy TEV T (39)
We give the general transfer
Theorem 24 Let
v>v2>0,
and let
f € Ll (CL, ‘/1:)

have an Lo, fractional derivative DY f in [a,z], a, x € R, a < x, such that

DI f(a) =0, forj=1,...,[v] +1.

Then

/ IDIF()| [Dgf(s)lds < Q(x — a) esssupyepaq [Daf(s)  (39)
where €2 as in (38).
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Proof
By Lemma 9,

fa € L1(0,2 — a)

with Lo fractional derivative DV f, in [0,z — al, see Definitions 12, 13.
Furthermore it holds, see (13),

D7 £,(0)=0, for j=1,...,[v] + 1.

Therefore by (37) we have

/0 D fu($)] 1D fals)lds < (x — a) esSSUPsefoo—a [D"fa(s)[?. (40)

Using (10) we get

/ D3 f(s+a)| [ (DG f) (s+a)lds < Qi (z—a)esssupyepo,—q) [Dof(s+a)f.
0

We have again by Proposition 4 that

/0 DY (s + a)| |DLf(s + a)|ds = / DYF(s)] [DLf(s)lds.  (41)
Also by Lemma 11 we obtain

esSSUDse(4—a) [D5f (5 +a)|* = esssupep g [D5f(5)]?

that is proving the claim. m
We give the transfer
Theorem 25 Let

1 1
—+-=1with0<p<1,
p q
let
v >y >0,
and let

f € Li(a,x)
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have an Lo, fractional derivative DY f in [a,z], a, x € R, a < x, such that
D7 f(a) =0, forj=1,...,[v] +1.
Additionally assume
(1/Dgf) € Leo(a, @)

and that D! f has the same sign a.e. in (a,z). Then

[ 1oasenpzseias = 0 o ([ 10cssrs) R

where Q is defined by (32).
Proof
Based on Theorem 2.3, of [4], special case of a = 0. Similar method of
proving as in Theorem 22. m
We give the transfer
Theorem 26 Let

1 1
-+ —=1with p,g>1
p q
let
1
7207 U27+2_77
p
and
f € Li(a,x)
have an Lo, fractional derivative DY f in [a,z], a, x € R, a < x, such that
D7 f(a) =0, forj=1,...,[v] +1.
Then

[ s 02 51t < (=) ([ 12s(oas) )

a

where
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) 2 (rp+1)/p . 0 (44)
t) := , r=v—vy—1, t>0.
T e 0P e !

Proof
Based on Theorem 2.4 of [4], special case of a = 0. Similar method of
proving as in Theorem 22. =

We present the transfer
Theorem 27 Let

v>0, v>v4+1,
and let
f € Li(a,x)
have an Lo, fractional derivative DY f in [a,z], a, x € R, a < x, such that
D7 f(a) =0, forj=1,...,[v] +1.

Then

[ 1D2£6) 1D (5 ds < Ol — @) esssupicgy [DEFOF (45)

a

where

Q) = 07 >0 (46)
T oyt T

Proof
Based on Theorem 2.5, of [4], special case of a = 0. Similar method of
proving as in Theorem 24. =

We further give

Proposition 28 Inequality (45) is sharp, namely it is attained by

fu(s)=(s—a)’,a<s<z, v>y+1, v>0.

Proof
Here we are acting as in Remark 2.6 of [4]. We use the known formula

/s(s — )Nt — o)t = =L —



Let
0<j<+1 m:=p—-7+1, a:=v—[v.
We have
l—a>0, v+1>0,

and by (21) we obtain

D) = Dy s = s (1) [0t -

1 Tl-a)l(v+1) ( d )m (s—a)™H = Hot+l) (s—a)’. (49)

" T(1-a) T(m+j+1) ds 4!
Le.
v—j v F(U + 1)
Dy (s —a)’ = 7 (s —a) (50)
Hence
DY f(a) =0, forj=1,....,[v] +1 (51)
and
Dif(s) = Di(s — a)’ = T(v + 1). (52)

Using Lemma 16, in particular apply (15), we obtain

F(v+1)(s—a)" "
Fv—~v+1) ~’

Dg—H(S o a)v — F(U + 1) (8 o a)v—'y—l‘

Date —a)” = (v —7) (53)

a

Therefore

(C(v + 1))
Fv—7v)T(v—v+1)

LHS(5) = [ |DLL.(5)] 1Dy 1.5l ds =

x )= B 1 I'(v+ 1) 2 v—y) _
/a (s—a)?N~"1gs = B (F(U—’H‘l)> (x—a)?*™") = R.H.S(45) (54)
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That is proving the claim. =
We present
Theorem 29 Let

1 1 .

-4+ —-=1with 0 <p<1,

p q
let

720, v>vy+1,
and let
f € Li(a,x)
have an Lo, fractional derivative DY f in [a,z], a, x € R, a < x, such that
D7 f(a) =0, forj=1,...,[v] +1.
Also assume
(1/D3f) € Loo(a, x)

and that D! f has the same sign a.e. in (a,z). Then

x x 2/‘1
[ 10irs) |Dz+1f<s>|dszm<xa>(/ !DZf(S)\qu> . 59)

where Q9 is given by (44).
Proof
We transfer here for arbitrary anchor point a € t Theorem 2.7 of [4]. We
apply the earlier established method, see Theorem 22. m
We present
Theorem 30 Let

1 1
-+ - =1 with p,qg>1,
P 4q
let
1
72070>7+177a
p

and let
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f € Li(a,x)
have an Lo, fractional derivative DY f in [a,z], a, x € R, a < x, such that
Dy f(a) =0, forj=1,....[v]+1;

let m > 0. Then

[ DY f(s)|™ds < Qu(z — a) (/; |Dgf(s)chls) " (56)

where
t(rm—l—l—i—( ))
Q4(t) =
(T(r+1)™ (rm +1+ (%)) (rp+1) m/p’
r=v—vy—1 t>0. (57)
Proof
Based on Theorem 2.8 of [4]. Its transfer to arbitrary anchor point a € R.
|
We give
Theorem 31 Let
v>v2>0,
and let
f € Ll(a’a :II)

have an Lo, fractional derivative DY f in [a,z], a, x € R, a < x, such that

DY f(a) =0, forj=1,...,[v] +1;

let m > 0.
Then

/ [Daf(s)|"ds < Q5(x — a)esssupyelq 4 | Do f ()], (58)

where
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Ho=m+1
T —=y+1)" (v=7)m+1)’

t>0. (59)

Q5(t) =

Proof
Based on Theorem 2.9 of [4], etc. =

We next give the notation valid for the rest of this subsection 5.1, we
follow [5].

Notation 32 Here we call

e [: a positive integer,

e v, r;: positive real numbers, 1 =1,...,1,
l
r= § T,
i=1

e 1;: real numbers satisfying

OS/’L’L<07 Z‘:]‘7"'717

e o, =v—pu;—1, i=1,...,1,
o v =max{(a;)_: i=1,...,1}, where (a;)— = (—a;)4,
o f=max{(w)y: i=1,...,1}, where ()4 := max («as,0),

e wy,ws: continuous positive weight functions on [a,z], a, z € R, a <
x?

e w: continuous nonnegative weight function on [a, z],

® 5,5, s> 0and

1 1
— 7:1143:1,2.
sk s,
We write
= (:ulw"?,ul)

for a selection of the orders u; of fractional derivatives, and
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F=(r1,..., 1)

for a selection of the constants r;.
We mention
Theorem 33 ([5]) Let

f € L1(0,x)
have an Lo, fractional derivative DV f in [0, z], z > 0, such that
D7 f(0)=0, forj=1,...,[v] +1.

Here a = 0. For £k = 1,2, let s > 1 and p > 0 satisfy

52

asy <1, p> (60)
1 — asy
and let
1 1
o= ———.
S2 P
Finally, let
T 1/5l1
Q1= </ w1(7)81d7'>
0
x , r/sh
Q2 := ( wg(T)_S2/pdT> . (61)
0
Then
. l
ARG (TR
0 i=1
+(L) x r/p
@uCy o ) (([“untey 10 sryear) (62)
0
where

l
p = ZO‘iTi +or,
=1
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and

O_T‘U

[Timy (v — i) (0 + )75 (psy + D)/sr
(63)

Cl = Cl(”)ﬁa T, D, 51782) =

We transfer last theorem to arbitrary anchor point a € R.
Theorem 34 Here all constants and parameters notation is as in The-
orem 33. Let

feLli(a,x), a<z, a,z€R,

have an Lo, fractional derivative D} f in [a, x|, such that

D f(a) =0, forj=1,...,[v] +1.

T ! 1 T r/p
[ w@ILIpese)rer < Qi@es@c, (z—a)*(50) ( [ o) rsz<T>|pdT)
a =1 a
(65)
Proof
By Lemma 9,

fo € L1(0,2 —a)

with an L, fractional derivative DVf, in [0,z — a], see Definitions 12,
13. Furthermore it holds, see (13),

D f,(0)=0, forj=1,...,[v] +1.

Notice that
r—a , 1/5,1 r—a , 7’/5/2
Qi(a) = </ wi (T + a)sldf) , Q2(a) := </ wa (T —I—a)_52/pd7-> :
0 a
(66)
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Next we apply (62) on [0,z — a] to f, with respect to

wi(a+7), we(a+7), 7€ [0,z —al.

We have

r—a l
/ wi(a+7) [[ 1D falr)["dr <
0 i=1

+(L) r—a r/p
@@ -0 ) ([ usasn 10 mpar) 60
Equivalently, via (10), we write

l

/Omwl(a + 1) [] 1D fla + 7)[dr <

i=1

r/p

01(a)Qs(a)C1 (w—a)” () ( / " st ) (D (at T)\”d7> - (69)

By Lemma 16, we have that D} f € AC([a,]).

Hence, by Proposition 4, we get (65). m

Next, we apply Theorem 34 to the spherical shell A.

We give

Theorem 35 Here all constants and parameters notation is as in The-
orem 33. Let f € L;(A) with

Ip, f(z)
orv

€ Loo(A), x € A;

A:=B(0,Ry) — B(0,R;) CRY, N>2, 0< Ry < Ry.

Further assume that D f(rw) € R for almost all r € [Ry, Ry}, for each
w e SVN=1, and for these

| DR, f(rw)| < M

for some M;j > 0. For each w € SV~! — K(F), we assume that f(- w) has
an Ly, fractional derivative D f(- w) in [R1, Rp], and that

Dy f(Riw) =0, j=1,...,[v] +1.
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We take

l
p=>_ri
i=1
and

0<pr <pelpus <. .. < <w.

If uy = 0 we set 71 = 1. Denote

(N=1)sh+1 (N-1)si+1
R Y- Ry !
Q1(R) = ( : )

(N—-1)s)+1
s p/s
Rél—N)%—i—l B R1 2
Q2(R) = e (69)
(1-— 2 +1
Then
O, f(x O, f
< * 1
/H‘ 87‘1 d C(/‘ 87‘” )’ (70)
where
1
Cc* = Q1(R1)Q2(R1)C1(R2 — Rl)m—(sl). (71)
Proof
By Theorem 20 for p; > 0 we get that
g f(x)
A).
Orti € Loo(4)

In general here we get that

Hz
8R1

l
H ‘ rHi
=1 0

Thus, by Proposition 3 we have

/ / H|D (rw)|" vV dr | dw =
SN 1 Rl

=1

€ Li(A).

,Uz
aRl

II_/H‘ 87’“1
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l

Ry

Rii=1
0% flx

Since Ré:;( L7 € Li(A), we also obtain

0% f(z Ry
I :—/ ‘le( ) ‘pdw —/ (/ | D, f(rw)[? TN_ld?“) dw =

A 67‘“ SN-1 R
Ro
/ (/ | D, f(rw)[P erdr) dw. (73)
(SN=1=K(f)) \V R

Notice here
f(-w) € Li([Ri, Re)), ¥V w e SY71 = K(f),
and
Asn-1(K(f)) =0.
Setting
wi(r) = wo(r) :== V71 r € [Ry, Ry,

we use Theorem 34, for every w € SV=1 — K(f).
We get

Re - N-1
/R H | DR f(rw)|" v dr <

L 4=1

1 Ro
Qu(R)Qa(R)Cr(Ry — Ry ) (/R DY, f(ru)P rN—ldr>. (74)

I.e we found that

Ry !
| g s ot <

Ry

Ro
c* / DY, f(rw)|P vN e, Y w e SN — K (). (75)
Ry

Therefore
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/ (/ H | DY f(rw)|" N 1dr> dw <
SN-1_K(f R

1 4=1

Ro
c* / </ |Dg, f(rw)[P TNldr> dw | . (76)
(SN=1=K(f)) \VFa

That is

I} < C*Iy, (77)
so proving (70). m
We continue with
Theorem 36 Let
f€Li(a,x), a<z, ajx €R
have an Lo, fractional derivative DY f in [a,x] such that
D7 f(a) =0, forj=1,...,[v] +1.

Then

—a)P
/ H DI ()i < - ]‘["'wH;O(ix Ha)+ o ID2fI%,  (78)
i=1 — Mg B

where
l
pi= Y (v—p)ri+1.
i=1
Proof
This is a transfer of Theorem 2.2 of [5] and its proof. By (15) we have
1 T
Drif(r S/ T — )| Dy f(1)|dt, 79
D& f (7)) F(’U—m)a( ) Da f(7)] (79)
implying that
, D? flloo(T —a)?=H
g ()] < 1Pad loelr = ) (50)

I(v—pi+1)

37



Hence

1Dg £l (7 — a)trars

SR Ry (81)
and
: !
i i Wl | Dy 115, (7 — a)zi:ﬂvﬁui)ri
T Dg"f V|7 é . . -
o) IT12%510) LPis oy )

Integrating (82) over [a, z] we get

l

/ w(T) H |Dng(7_)’nd7_ < [ ||w”oo ||Daf||oo - / (T—a)25=1(”"”)”dr _
a i=1 [Tie) (C(v — i +1))" Ja

[wlloo DSl (2 —a)f
[Tiey @@=+ 1) p

, (83)

proving (78). m
We apply Theorem 36 to the spherical shell A case.
Theorem 37 Let

f € Li(A)

with

op, f
orv

€ Loo(A).

Assume DY, f(rw) € R for almost all r € [Ry, Ry], for each w € SN,
and for these

| D, f(rw)| < M)

for some M7 > 0.
For each w € SN~1 — K (f), we assume that f(- w) has an L., fractional
derivative D} f(- w) in [R1, Re], and that

Dy f(Riw) =0, for j=1,...,[v]+ 1

We take
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0<p <pe<p3<...<p<w.

If 1 =0 we set r = 1.
Then

RY MRy — Ry)PMy 27N/

a,u‘z
/) H K l v 69
= =TI (M0 — e+ ) DO/
where
l
pP= Z(U = pi)ri +1
i=1
Proof
Here
O (o

E Li(A).

H ‘ r#z

=1

Hence as before

O f(@)

!
hi= /Azl:[l ‘ OrHi

Here we set

v R N-1
= || Dy f(rw)|" dr | dw
x /SN ok / | (rw)|" r r

R =
(85)

w(r) = PNl re [R1, Ra].

For each w € SV~! — K(f) we apply Theorem 36. From (78) we
obtain

Ra N-1/p. _ p.p
/ [[10% frp o¥-tar < — 2R R e
R ;4 p ILizy v —p + 1))
(86)
RY“'(Ry — Ry)P Mj
T Iy (T — s +1)"

=0, Vwe SN - K(f). (87)
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Therefore

Il:/sN ki (/ H|D’“ rw)|" N 1dr>

R

<6 / dw =10 / dw (88)
(SN=1-K(f)) SNt
27rN/2
_HI‘(N/2)’ (89)

proving (84). m
We continue with
Theorem 38 Let
feLlia,x), a<zx, a,x €N,
have an Lo, fractional derivative DY f in [a, x] such that

D7 f(a) =0, forj=1,...,[v] +1.

Assume also that D! f has the same sign a.e. in (a,z). For k = 1,2, let

0< s <1,
let
p<0
and let
1 1
oi=—— -,
S22 P
Q1(a) and @Q2(a) as in (64), C; as in (63).
Then
/ H | DY f(r)|"dT >
PJF(L) * v /P
@@ (o -0 ) ([Cwanipispar) L @0
where
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!
pi= Zam +or. (91)
i=1

Proof
Similar to Theorem 34. Transfer of Theorem 2.3 of [5] to anchor point
acR. =

We give

Theorem 39 Let

S1,82,D € (051)7 rsy < 1

and
52 52
— < p<
1— asg + 59 p 1+ fBsy’
1 1
o=——-,
s2 P
pasin (91), Q1(a) and Q2(a) as in (64), C; as in (63).
Let

f€Li(a,x), a<z, ayx €R

have an Lo, fractional derivative DY f in [a, x|, such that

DI f(a) =0, forj=1,...,[v] +1.
Assume also that D? f has the same sign a.e. in (a,x). Then

l

RGN (IR

i=1

1 z r/
01(0)@2()C1 (- o) () ( / wz(T)IDZf(T)I”dT> T (@

Proof
Similar transfer of Theorem 2.4 from [5]. =

We apply Theorem 39 on the spherical shell A.

Theorem 40 All parameters and constants are as in Theorem 39.
We take
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!
p:Zri,
i=1
and
O0<pm <po<pz<...<py<w.
If py =0 we set 11 = 1. Let f € L1(A) with

O, [

o0 € Lo (A).

Assume that Dy f(rw) € R for almost all r € [R1, Rg], for each w €

SN=1 and for these
| D, f(rw)] < M

for some M7 > 0.

For each w € SN~ — K (F), we assume that f(- w) has an L, fractional

derivative D} f(- w) in [Ry, Re], and that

Dy f(Riw) =0, j=1,...,[v] + 1,

also D (- w) has the same sign a.e. in [R1, Ry].

Then
[ ez (/552
Orti orv ’
where
C" = Q1(R1)Q2(R1)C1(R2 — Rl)p+(§)-
Proof

Similar to Theorem 35 by using (92). m
We continue with
Theorem 41 Let

fe€Li(a,x), a<z, a,x R,

have an Lo, fractional derivative DY f in [a, x|, such that

42
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D7 f(a) =0, forj=1,...,[v] +1.

Let
v> g > pp+12>1.
If
p,qg>1: ;4—;:1,
then

x 9 z 2/p
[ pm s olar < Catamay 0 (([Cozsepar)

(95)
where
Cy = 02(Ua M1, #2ap)
is given by
(;)(1/17)
Cy := 2 ", v,
T(v—p)T(v = p2 +1) (v = p1)g + 1)/ (20 — 1 — p2 — 1)g +(2)> !
96
Proof
Transfer to a € R of Theorem 2.5, [5]. =
We give

Theorem 42 Let
feLlia,x), a<zx, a,x €N,
have an Lo, fractional derivative D} f in [a, x|, such that
DY f(a) =0, forj=1,...,[v] +1,

also |DY f| is decreasing on [a,x]. Let [ > 2. If

1 1
p,g>1l: —+-=1
p g
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and

then

z ! x 1/
[ TLipessyar < cyte - ayowsteos ( / |sz<t>|%) o)
a =1 a

where
l
Y= Zai
i=1
and
- p
Cy = C3(v, i, p) = ,
(0 + D2+ p+ DTy D0 — )
Proof

Transfer of Theorem 2.6 of [5]. m
We finish this subsection with

Theorem 43 All as in Theorem 42 with p = 1 and ¢ = oo.
Then

T l
/ [11D% £(r)ldr < Ca(x — a1 [ DFIL,
a =1

where
l
Y= Zai
i=1
and
Cy = Calv,70) !
4 = Cy(v, 1) == .
(Y+ Dy + 1+ DT Do — )
Proof

Transfer of Theorem 2.7, [5]. m
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5.2 Riemann- Liouiville fractional Opial type inequalities
involving two functions

We present
Theorem 44 Let

o, € Ry, B> ar, 00, f—a; > (1/p),p>1,i=1,2,
and let
fi,fo€Li(a,x), a, z€R, a<uw
have respectively Lo, fractional derivatives Dg f1, Dg f2 in [a, z], and let
D Ffi(a) =0, fork=1,...,[8]+1; i=1,2.
Consider also

p(t) > 0 and q(t) > 0,

with all
P(t), —,4(t) € Loo(a, )
9 p(t), oo 9 .

Let
Ag >0 and Aoy, Aoy, 2> 0,

such that
)\g <p.
Set

S (B—a;j—1)
Pi(s) := /0 (s — t)p =1 (p(t+ a))_l/(p_l) dt, 1=1,2; 0<s<z—a,

(101)
_ a6 7)) @7 s £ ap e
A(S) - A A ’ (102)
(L(B —ar)™ (T(B — az))™
r—a (P_/\B)/P
Ao(z — a) == < / (A(s))P/P=20) ds) , (103)
0
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and

21—((/\041"!‘/\[3)/10), if Aoy +A3 <D,
512:: (104)
L, if Aoy +2Ag >0
If Ao, = 0 we obtain that,

/ "4(s) [IDE AP DRI+ D fos) P 1DF o) ] ds <

*a1+Aﬂ)

)l oo lmsortsor)of

<Ao(9c —a)

Proof

Similar proof like of the Theorems 22 and 34. Here we transfer The-
orems 4 of 2] to an arbitrary anchor point a € R. In fact for a = 0
inequality (105) is identical to inequality (8) of Theorems 4 of [2]. We
apply it here for the translates

fia == fi(- +a), faa:= fa(- +a)

p(- +a), q(- +a)

and the fractional derivatives
DPf1a, DP fau, D% f1q, D% fo, i=1,2,

all over [0,z — a].

We use Lemma 9, the equivalent Definitions 12, 13 and (13). We
use (9), (10), (11) too. We get the result by Proposition 4 applied at the
end. m

We continue with

Theorem 45 All here as in Theorem 44. Denote

222/28 — 1 Gif Aay > g,

53 1= (106)
1, if Ay < Ag.

If Ao, =0, then it holds

/w q(s) [|D?.3‘2f2(8)|*"2 IDZF1(8)I™ + | Dg2 fa(s) o2 [Dg fa(s)[¥] ds <
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As/p
(Ao(:l: —a) /\a10> o(p—A3)/p ()\a:\—f)\g) 5?:\,3/19
z M
</ p(s) [IDLAIP + DL 1a(5)P) ds) . (107)

Proof

Transfer of Theorem 5 of [2] to a € R. Similar proof to Theorem 44. m
The complete case A\y,, Ao, 7# 0 follows.
Theorem 46 All here as in Theorem 44. Denote

9((Aay +Aay)/Ag) _ 1, if Aoy +Aan = Ag,

M= (108)
L if Aoy + Aas < Ag,

and

17 Zf )‘al + )\az + /\ﬂ > D,
Gy = (109)
21 (Ao FAas+A)/P) G f N 4 Ay + Ag < .

Then, it holds
| a)|Ip2 AP D a) P D2

+ DS A DS o) D2 falo)]ds

< Ao(z—a) g Aﬁ/p.[yﬁ/p,yﬁQ(p—Aa)/p (1 Aay ) 87P)-
o (>‘Oé1 + )‘042)(>‘041 + )‘042 + Aﬁ) “ 2
CC ()\a1+)\a2+)\g)
[ o) (DEeIP + D2 )as] T o)

Proof

Similar transfer to a € R of Theorem 6 of [2]. =
We proceed with a special important case.
Theorem 47 Let
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B>a1+1, a; € Ry
and let
fi,f2 € Li(a,x), a, z€R, a <x
have, respectively, L., fractional derivatives D f1, D f2 in [0, z], and let
D Ffia) =0, fork=1,...,[8]+1; i=1,2.
Consider also

p(t) >0 and q(t) = 0,

with
(1), — sa(t) € Loo(a,)
p sy N 04 a,T).
p(t) =
Let
AQZO, 0<>\a+1<1,
and
p> 1.
Denote

9Aa/Aat1 _ 1, if Aa > Aasi,
6y e (111)
1, if A< Aatl,

’ (1/(1=2at1)) 2et) / Pghars \ 0
L(z—a):= (2 That1 = 112
@)= (2 [ (ato) ) ()T

and

Pile = a)i= [z =)o w00 (o) Vi Das, (113
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p1 (AatAat1)
Ao )) . (119

I3 —a1)
and
wy 1= 2(57) Gatharn) (115)
with
O(x—a) =T(x—a)w. (116)
Then

| a)[D2 AP 1D ()P DR (o) (D5 () s

>‘04+Aa+1)

<oa—a) [ ) (IDIAGIY + IDER()) ds] o

Proof
Similar transfer to a € R of Theorem 8 of [2]. =

We give

Theorem 48 All here, as in Theorem 44. Consider the special case
of

(117)

Aas = Aoy + Ag.
Denote
- A As/p
T(z - a) == Ag(x — a) (A n M’) 2 =R, (118)
a1

Then, it holds
| a)[Ip2 A |Dg (o) 1D (s)P

DG fi ()P0 [DE fo(s)1 D fals) ] ds <

2(3aq +Ag)

7 @—a)( [ o) (D2AGP+IDIREP)as) T L (1)
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Proof

Transfer of Theorem 9 of [2]. m
Next, follow special cases of last theorems.
Corollary 49 (to Theorem 44) Set A\, = 0, p(t) = q(t) = 1.
Then

[ D2 AP 102091 + D3 fls) P (D2 as)] s <

€T ()\al“r)\,ﬁ‘)
Cia-a) [ D2+ D) as] T a20)
where
As As/p
Cl(ﬂf - CL) = (AO(ZL' — CL) )\a2_0> <)\a1_|_)\6> (51, (121)
21~ (Cer 2P i Aoy A <,
5y = (122)
1, if Aoy +2Ag >0p.
We find that
p — 1)((Rarp=Aa1)/p)
C%@_“) >:{( & ) (Cha VJX
Ay =0 (L'(8 — a1))*1 (Bp — arp — 1) AerP=Aer)/P

( (p— M) (=3)/p)
()\al/gp - )\al a1p — )‘111 + p— )\ﬁ

)= /P) ) } X (z—a)(AorFP=Aay@1p=Aa; +p=25)/p)
(123)

Proof
Transfer of Corollary 10 of [2]. m

We continue with
Corollary 50 (to Theorem 44: Set Ao, =0, p(t) =q(t) =1, Ao, =

Ag=1,p=2)
In detail, let
aq 6§R+a B>al, B—a> (1/2)7

and let

fi,fo € Li(a,x), a, z€R, a<x

have respectively Lo, fractional derivatives Dg f1, Dg f2 in [a,z], and let
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D fia) =0, fork=1,...,[6]+1; i=1,2.

Then

[ 192 560 1D21 )] + 1D a5 102 () s <

(z — a)B~) = 5 , , ,
<2F(ﬁ —a)VB—o1 V28 =201 — 1> (/a [(Daf1(s)) + (DY fa(s)) }ds> _
(124)

Proof
Transfer of Corollary 11 of [2]. m
We continue with
Corollary 51 (to Theorem 45, \,, =0, p(t) = q(t) = 1.) It holds

/ 1022 fals) o2 IDEFu(s) ™ + D82 i) 2 |DLfo(s)|ds <

(>\/6+)\0(2)

Cola—a) [ [ID2R@P +IDERGIP)as] T

Here

P—Ag Aﬁ/p
0) (5 )<A5 ) 507 (126)
a1:

Co(x —a) := | Ao(z —
(o= )= (oo - o), o

2)\a2/)‘ﬁ — 1, Zf )\az 2 )\6’
o (127)
1, Zf >\a2 S >\ﬁ
We find that
p — 1)Pazp=2as)/p)
(Ao(a:a) >:{( (A ) Cop— )/)>><
Ay =0 (F(ﬁ—OQ)) ag (ﬁp—OéQp— 1) agP—Aagy)/P

.Y
(( (p— /\ﬂ)((P 5)/P) )(( - ))}X(xia)(()\a2ﬂp—>\a2a2p—>\a2+p—)\5)/p).
p—Aa)/p

Aagﬁp - A0120‘217 - )‘Otz + p— )\ﬁ
(128)

Proof
Transfer of Corollary 12 of [2]. m
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We give
Corollary 52 (to Theorem 45, A\, =0, p(t) =q(t) =1, Ao, = Ag =
1, p=2.) In detail, let

ag € Ry, > ag, 0—ax>(1/2),
and let
fi,fo€Li(a,x), a, z€R, a<w
have respectively L, fractional derivatives D? fi, DY fo in [a,z], and let
D *fi(a) =0, fork=1,...,[8]+1; i=1,2.
Then, it holds

/ (1022 £2()] 1DE F1(5)] + 1D £1()] 1DE fo(o)] ] ds <

Cita—a) ([ [0IAF + DiReP]as). 0
where
Ci(z —a) = (z — )7 . (130)
? V2 T(8 — az)y/B—az V26— 2a3 — 1
Proof

Transfer of Corollary 13 of [2]. m

We continue with

Corollary 53 (to Theorem 46, A\, = Ao, = Ag =1, p =3, p(t) =
q(t) = 1.) It holds

/ (105 () 1D ()] DL 1)+ D52 F(5)] IDZ* fo()] DS fo(s)] ] ds <

tofe =) (V2+ 2 ) ([ (102AGF +1D0F) as) (o)

Here,

AO(CU - a) = 4(:1: — a)(Qﬁ*alfrm) %
1

I'(B—a1) T(B—a2)[3(38 —3a; — 1)(38 —3as — 1)(28 — a1 — a»)]?/3
(132)
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Proof
Transfer of Corollary 14 of [2]. m

We give

Corollary 54 (to Theorem 47, here A\, = 1, Aoy1 = 1/2 p =
3/2, p(t) = q(t) = 1.) In detail: let

B>a1+1, aq G%_;,_,
and let
flaf? € Ll(aax)a a, T &€ §R7 a<zw

have respectively L., fractional derivatives D 11, D f2 in [a, z], and let

D Ffia) =0, fork=1,...,[f]+1; i=1,2.

Then, it holds

| D @ VIDE o)+ 103 )] /108 ()]s <

- [ (DA DR 6] s
where
% L 2(x — a)(3f3—30‘1—1)/2
O*(x —a) := TG o) V35303 (134)
Proof

Transfer of Corollary 15 of [2]. m

We continue

Corollary 55 (to Theorem 48, here p = 2(\, + Ag) > 1, p(t) =
q(t) =1.) It holds

[ Iz f@Pe D2 )P 1D (o)

D2 fi(8)1 T | D fols) P D fa(s)1 ] ds <

T [ T (IDEA() PO 4 DL ()20t ) ds). (135)

Here,
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*8
j?($ —a) = Ay(z — a) (2()‘5)> <2(Aa1+*5)) 7 (136)

)\Oél + )\ﬁ
and
Aoz — a) = 06 (z — a)’1, (137)
where
0= !
C (T8 = 1)1 (T(B — ag)) ™o
(233, +2Xa; Ag—Xay)
20 oy +2Xg—1 (2xa; +27g)
2Xa, B + 2)‘ﬁﬁ =2 01 — 2)\50[1 —1
20, +205—1 ((2Xay +225-1)/2) (18)
2)‘0415 + 2)‘ﬁﬁ - 2)‘041052 - 2)\/@0[2 —1 ’
(2/\0414’)\[3)
: 5 ,
where

S i= ANZ B46Xa; AgB—2X2 a1 —2Xa; Aga1 —2A2 o —4\a, Agaa+2X5° B—2X 5

and

S
= —. 1
o <2Am+2xﬁ> (139)
Proof

Transfer of Corollary 16 of [2]. m

We give the interesting special case

Corollary 56 (to Theorem 48, here p = 4, A\, = Mg = 1, p(t) =
q(t) = 1.) It holds

[ [ID8 A6 (D5 £2(6)? 1D+ (DE A (0))? 1D fa(5) D2 ()] s <

1@ =a)( [ (DI + (DERG)") ds). (140)
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Here,

* L A*(l' B a)
T*(x —a) = “ 95— N (141)
and
A*(x —a) == 00" (x — a)él, (142)
where

R 1 3 3/4 3 3/2
9‘:r<ﬁ—a1><r<ﬁ—a2>>2(4&—%—1) (4ﬂ—4a2—1> ’

(143)
0" = 5 " (144)
"\ 126 — 4aq — 8an ’
and
0~1 = 3ﬂ — 1 — 20[2. (145)
Proof
Transfer of Corollary 17 of [2]. m
We continue with related results regarding the Loo- norm || - ||cc-

Theorem 57 Let
aj,ae € Ry, B> ag, a9
and let
fi,fo€Li(a,x), a, T€R, a<x
have respectively Lo, fractional derivatives Dg f1, Dg f2 in [a,z], and let
D Ffia) =0, fork=1,...,[0]+1; i=1,2.
Consider also
p(s) =2 0, p(s) € Loo(a,x).

Let Aays Aas, Ag > 0. Set
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Hp(s)”oo (fL’ - a)(ﬁ)\al 7a1)‘041+ﬂ)\a2*a2)\a2+1)

P = (005 an 1 1)1 (D(3 — an + D)™ [Fhay — anhos § Bhag aden +1 '
146

Then

[ )1z AP DE () D2 A ()

+| D22 f1(s) o2 | D2 fo(s)| Ifoz(s)W]ds <

plr —a 2(Aa; A 224 2Nn 2 4
AL D[ D3 Al DS AR +IDE IR +IDE I ).

2
(147)
Proof
Transfer of Theorem 18 of [2]. Similar to the proof of Theorem 24, etc.
]
We give special cases of last theorem.
Theorem 58 (all as in Theorem 57; \,, = 0.) It holds
/ p(s)[|D2 ()1 IDA() + D fals) 1 D fals) ] ds <
_ (ﬂ)\a _al>\a +1)
S)lloo (T — @ 1 1 Aaqg+A Aaq+A
Hp( )H ( : ) . [HDgfIHOOrF L ”Daﬂf2||ool+ ﬁ:|.
(F(ﬁ -1+ 1)) o1 [ﬁ/\oq - al)‘oq + 1]
(148)
Proof

Transfer of Theorem 19 of [2]. Similar to the proof of Theorem 57. m

We continue with
Theorem 59 (all as in Theorem 57; A\, = Ao, + Ag.) It holds

[ ) [ID2 s D5 ()P D) P

+ D2 i) [DE fals) M1 DL fa(s)! | ds
< Ip(3)lloc
" UE(E = a1 +1)¥ (0B = az + 1) #4
(z — a)(m)\al7a1)\a1+ﬁ)\ﬂia2)\alia2)\ﬁ+l) } [HDﬁfl HQ()\al +)‘5)+\|Dﬁf2”2(/\al +>‘ﬁ)] .
(Qﬁ)\al — 041/\(11 + ﬁ)\g — ag)\al — ag)\g + 1) e o e *°

(149)
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Proof
Transfer of Theorem 20 of [2]. =
We give
Theorem 60 (all as in Theorem 57; A3 =0, Ay, = Ao,.) It holds

/ p(s)[|D3‘1f1(8)|A“1 |1Dg2 fa(s) 1+ [Dg2 fi(s) 1 |Dg fa(s)[or |ds <

2]

2

p*(a —a) |1 DF filloe™ + 107 falloe (150)

where
_ (26>\a —Qa1Aa; —a2Aa +1)
X P(8)||eo (x —a 1 1 1
o= { Ip(s) e (& = ) !
TB—a1+1)T(B—az+ 1)) (2B a; — @1 Aay — @2Aoy + 1)
(151)
Proof
Transfer of Theorem 21 of [2]. =
We give

Theorem 61 (all as in Theorem 57; \,, =0, Ay, = Ag.) It holds

| )10 o512 1D2R ()P + 1D i 5)P (D2 ()]s <

_ (BAag—a2Xa,+1)
( (@ = @)oo () oy ) (ID2AIZ" + D2l 2).

(IBAOLQ - O[QAO[Q + 1)(F(5 —ag + 1)) 2

(152)

Proof
Transfer of Theorem 22 of [2]. =

We continue with

Corolarry 62 (to Theorem 60, all as in Theorem 57; A3 =0, Ao, =

)\a27 a9 = ] + 1.) It holds

| [P AP (D (o) 41D (s) P D o) s <

( (= @) 2000 Aot ()]
(

Jé] 2oy 8 2oy
26Xy — 201 A0y — Aoy + 1)(8 — 1) 1 (T(B — ay))Pe )[HD Fillso® +| DB fol 557 |

(153)
Proof
Transfer of Corolarry 23 of [2]. =
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We give
Corolarry 63 (to Corolarry 62) In detail: let

a1 ERy, B>a1+ 1,
and let
fi,f2 € Li(a,x), a, z€R, a < x
have respectively L., fractional derivatives D 11, D f2 in [a, z], and let
D Ffi(a) =0, fork=1,...,[8]+1; i=1,2.

Then, it holds
[ (I8 ) 1 )] + D5 ()] D5 falo) s <

x — a)2B—a1)
(zw ! a1>2<)r</3 - oq))2> DI A1 +IDERIZ]. (54)

Proof
Transfer of Corolarry 24 of [2]. =
We finally give
Proposition 64 Inequality (154) is sharp, infact it is attained when

fi=fa,
by
fl(s):(s—a)ﬁ, a<s<uz B>a1+1, ag >0.

Proof
Clearly (154) when f; = fo, collapses to

(z — a)?B~e1)
2(0(8 — o1 +1))?

xr
/ 1D fi(s)] DG+ fu(s)ds < < > 1D fill3o, (155)
a
see Theorem 27 and Proposition 28. =
Next we apply above results on the spherical shell A.
We make
Assumption 65 Let
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a1, 02 S §R+7 /6 > a1, g, ﬂ_al > (1/p)7p > 1)Z = 1727
and let

f1, fa € Li(A)
with

O f1(x) O, ()
ore 7 orP
A:=B(0,Ry) — B(0,R)) CRY, N>2, 0< Ry < Ry.

Further assume that each Dfﬁ fi(rw) € R for almost all r» € [Ry, Ra),
for each w € SN~ and for these

€ Loo(A), x € A

D, filrw)| < M,

for some M; > 0; i = 1,2. For each w € SN=1 — (K(f1) U K(f»)), we
assume that f;(- w) has an Lo, fractional derivative Dgl fi(- w) in [Ry, Ra],
and that

Dy Ffi(Riw) =0, k=1,...,[8] +1;

i=1,2. Let A\g > 0 and Ay, Aa, > 0, such that \g < p. If a1 = 0 we set
Aa; = 1, and if g = 0 we set Ay, = 1.

We need

Notation 66 (on Assumption 65) Set

S p(B—a;—1) 1-N )
Pi(s) :—/O (s—r) P71 (r+Ry)rtdr,i=1,2; 0<s<Ry— Ry,

(156)
Als) = (s + Rl)(N_1)<1_<TB)) (fl(s))’\al(ppl) (APQ(S))A(J?(T)’ (157)
(LB —a1))™r (D(B —az))"™
and
Ro—Ry (p=2g)/p
R — NP P2s) 4 .
Aalte =)= ([T (a0 as) (158)
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We present
Theorem 67 (All as in Assumption 65 and Notation 66). Here
Aay >0, A, =0 and p = Ay, +Ag > 1. Then

/ [ ‘ g, f1(z)
A Oret

<A0(R2—<R1)A

)\al )\0‘1

. f1(z) ‘Aﬁ . ‘ O fa()

. f2(z) ‘ AB} "
or? Orat

orp

<

)‘041 + )\5 orB ort
(159)
Proof
By Theorem 20 for a; > 0 we get that
O, fi(z) .
W S LOO(A), 1= 1,2

In general here the integrands of both integrals of (159) are in L;(A).
Thus, by Proposition 3 we have

I = L.H.S(159) = /

Ro
N—1 (/R [ DG fr(rw) M | DY, fi(rw) o+
- 1

D3 fa(rw)| M | DY, f2(7"w)\xﬁ]rN‘1dr) dw =

Ra
/ ([ 1 atr)Por 107, Atrw)Pes
(SN (K (UK (1)) N By
(D, folrw) P (D folrw) 221N dr ) duw. (160)

Similary we have

15 5
o= [ [P [ H e

R2
= [ ([ 0DR fwl 10, st 1) =

Ro
| DG Sl + DG, falra) e

/(SNl—(K(fl)UK(fz)))( Ry
(161)

Notice here Agn—1 (K (f1) U K(f2)) =0.
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Here for every w € SN=! — (K(f1) U K(f2)) and for p(r) = q(r) =
rN=1 r € [R1, Rs]), N > 2 we apply Theorem 44. We obtain

Ry
/R (D3 fr(rw) s | DR, fi(rw) P+ D3 fa(rw) P | DRy fo(rw) PN ~tdr <
1

Ag
)\3 <Aa1+kﬁ> y
Aoy =0 /\a1 + /\g

Ry
( [ 1Dk s + 1D, et W“) & (162)

(AO(RQ — Ry)

Integrating now (162) over SV~! — (K(f1) U K(f2)) and taking into
account (160) and (161) we derive (159). =

We continue with

Theorem 68 (All as in Assumption 65 and Notation 66). Here
Aay =0, Mg, >0 and p = Ag + Ag, > 1. Denote

222/28 — 1 Gif Aay > g,

b3 1= (163)
L, if Aoy < Mg

Then
/Hazifz<x> Ny a§1f1<x>‘xa+‘a§§f1<x> Ny aﬁlfxm‘xﬁ} e
A Oroz orP Oroz orP -

Ag\ M/ Oh (@) (p | O falz) (v
_ Aas/p [ 2B Ag/p Ry R
(aotrs | )2 (2)" 5 (/AH S\ Gl )

(164)

Proof

Based on Theorem 45, similar to the proof of Theorem 67. m

The complete case Ay,, Aq, > 0 follows.

Theorem 69 (All as in Assumption 65 and Notation 66). Here
Aars Aaw >0, p = Aq; + Aay, + Ag > 1. Denote

2((hea F2a2)/A8) — 1 Gif Ay + Aoy > Mg,
. (165)
L if Ay +Aas < A,

Then
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/Haﬁ F1(2) | Aay [ 092 fa(2) [Pay | Op fil) ‘Aﬁ
A Orat Oraz orP
‘a;zg F1(2) [ May | 09 fo(2) [Py | D, fg(x)‘xﬁ}
P g <
Oraz Orat orb
Ao(Ry — Ry) e ol Ao, P87P) 4 2=2a)/P (47, ) PAa/P)].
(Aay + Aag)p o “
Oy f1(z) p | O fa(z) v
AL =

Proof
Based on Theorem 46, similar to the proof Theorem 67. =

A special important case it next.

Theorem 70 All as in Assumption 65. Here as = a1 + 1, A, :=
Aoy =0, Aag1 = Aoy, € (0,1), and p = Ay + A\o+1 > 1. Denote

9(Aa/Aat1) 1, if Aa > Aat1s
6y = (167)
1, Zf Ao < )\oz-i-lv

(1= Aat1) ( N—Aat1 N>‘a+1>:|(1)‘0t+1) <93 )\a+1>>\a+1
L(Ry—Ry) i= |2 ~—"24 [ Ry T%at1 — Ry T %at1 28 Zotl ,
(168)
and
Ry
PRy — Ry) = / (Ry — 1) (B=1=0p/-1) L(1=N)/(0-D gy (169)
Ry
- (Pi(Ry — Ry)P= D\
®(Ry — Ry) := L(Rs R1)< Aoy 2(=1), (170)
Then
/Hag f(@) 2a | ORT fo() Aa+1+‘a§; fo(a) | 2a | OR T fi(2) )\a+1}d$<
A Orat Oraeitl Ore Oraitl -
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Proof
Based on Theorem 47, similar to the proof of Theorem 67. m
We also give

Theorem 71 (All as in Assumption 65 and Notation 66). Here
Aas = Aoy + Ag and p = 2(A,, + Ag) > 1. Denote

- A As/p \
T(RQ — Rl) = Ao(R2 — Rl) <> 2° ﬁ/p. (172)

)\a1+A5
Then
/HW Aoy m Aag tAg ‘8%1]01(:6)‘)\[3
A Ore Oro2 87“6
EAICISRL VO O
Oro2 orai OrP =
- 9% fi(x) (p |05 folx) (»
T(Ry — Ry) </AH T ‘ +‘ e de . (173)
Proof

Based on Theorem 48. =
We continue with related Lo, results on the shell A. We make
Assumption 72 Let

ap,ap € Ry, B> 1,02
and let
fi, f2 € L1(A)
with

a5, fi(z) Oy fa(z)
ors 7 orp

€ Lo(A), = € A;

A:=B(0,Ry) — B(0,R;) CRY, N>2 0< Ry <Ry.

Further assume that each
Dglfi(rw) € R for almost all r € [Ry, Ry, for each w € SV~1 and for
these
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D, filrw)| < M;

for some M; > 0; i = 1,2. For each w € SN~ — (K(f1) U K(f2)), we
assume that f;(- w) has an Lo, fractional derivative Dgl fi(- w) in [Ry, Ry),
and that

DY fi(Raw) =0, k=1,...,[8] + 1;

1

i =1,2. Let A\ays Aayy Ag > 0. If a1 =0 we set A\, =1, and if ag = 0 we
set g, = 1.

We present

Theorem 73 All here as in Assumption 72. Set

R2N—1(R2 _ Rl)(ﬁ)\al —01Aaq +PBAag —@2Aay+1)

p(Ro—Ry) =
( )T B = a1 + DV (T3 — a2 + 1P (Bhar — athar + Bhag — ke £ 1)
(174)
Then
/ H O% f1(2) [Aar | 052 fo(@) | Aar | Oy, fi(2) ‘Aﬁ
A Oorot Oro2 orp
‘ 092 f1(2) | Aay | 0% fo(@) [y | Oip, fa(2) ‘Aqu )
Oro2 Orot orP -
aN/2
p(RQ _Rl)[M12(/\a1+)\g) +M12)\a2 +M22/\a2 +M22(Aal+)\ﬁ)]m' (175)
Proof
It is based on Theorem 57. By Theorem 20 for o;; > 0 we get that
Oy fi . .
ore € LOO(A)7 =12, j=1,2.

In general here the integrand of the integral of (175) belongs to Li(A).
Thus, by Proposition 3 we have

R>
(] DR AGw)P= 105 falrw) o2 1D, () P+
1

L.H.S(175) = /

gN-1

1

D3z fr(rw) e DG falrw) 1 DR, L) P dr ) dw (176)
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Ro
:/(SN R GOUR () (/R (D3 fr(rw) Py |DS2 fo(rw)[ 2 [ DY fi(rw) >+
1 2 1

D furw)Pz DG fo(rw) X (D, folrw) ¥ dr)dw  (177)
(by (147) for p(r) =rN=1, r € [Ry, R])

p(Ry — )

2(Xa; +23)
< MR D5, £ w) )
(SN=L—(K(f1)UK(f2)))

, [R1, R2

2 2 2(Aay+Ag)
1D F1 ()2 g 1D )27 o HID o w) 1205550  dw

(178)

< p(R2 — Ry) [M12(’\a1+’\5) 4 M P2 4+ M 4 MZQ(/\QI+,\H)] . (179)

- 2

dw =

/(SN_l(K(fl)UK(fz)))
27TN/2

I'(N/2)’
(180)

p(Ry — Ry)
2

[M12(>\(,1+>\g) + M P2 4 Mo +M22(Aa1+xﬁ)}

/ d / du = 2 (181)
w = w = e
(SN=1—(K(f1)UK(f2))) sN-1 I'(N/2)

since Agn—1 (K (f1) U K(f2)) = 0. That is proving inequality (175). m
We give special cases of last theorem.
Theorem 74 (All here as in Assumption 72, here Ay, = 0.) It holds

/ H 0% f1(2) | Aay | O fr() ‘Ag+ ‘a;'g f2(z) | Aey | O fol) ‘Aﬁ}dm<
N Ore orP Ore orP -

R2N—1(R2 _ Rl)(ﬁ)\alfalz\al+1)

X
(T(B — a1 + 1)1 [Bray — 1 hay + 1]
27TN/2
(Aag+Ag) (Aay+Ag)
[Ml 126) 4 g, e }F(N/2)' (182)

Proof
Based on Theorem 58 and similar to the proof of Theorem 73. m
We continue with
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Theorem 75 (All here as in Assumption 72, here Ao, = Ao, + Ag.)
It holds
/ H g fi(x)
A oret

‘ Iz, f1(z)

Oraz

Moy | 0% fo()

Aoy +Ag 8@1 fi(x) | As
Oro2 ‘ ‘

orB

Moy ths | 0P fo(x) [Aay | Oy, fa(z) [ As
‘ Orot orP ‘ }dxg

R2N—1(R2 _ Rl)(Qﬁ)\al—al)\al—i-ﬂ)\g—az)\al —azAg+1)

(T(B— a1+ 1)1 (D(B — az + 1))21 72 [280a, — a1day + BAg — a2da; — a2Asg + 1]
27TN/2
I'(N/2)

% [M12(>\a1+>\6) + M22()‘041+>‘,8)} (183)

Proof
Based on Theorem 59 and similar to the proof of Theorem 73. m

We give

Theorem 76 (All here as in Assumption 72, here A\g = 0, Ao, = Aa,).
It holds

/ H IR, fi(z)
A 87“0‘1
RQN_I(RQ o Rl)(ZB)\al —a1dag —Q2Xa +1)
X
(F(,B — o1 + 1) F(ﬂ — a9 + 1)))“"1 (2,8>\a1 — 041AO[1 — Oég/\a1 + 1)

2 N/2
['(N/2)

Aay Aoy

g fa(w)
Orez

Iz f2(x)

Oret

Aoy OF: fi(z)
+’ Ore2

)\al}dm <

[Mlﬂal + Mzml] (184)
Proof
Based on Theorem 60 and similar to the proof of Theorem 73. =

We give

Theorem 77 (All here as in Assumption 72, here Ao, =0, Ao, = Ag.)
It holds

0% fo() | Moy | O J1(2) Moy | O F1(2) | My | Dy, o) | Nay
|2 | | ) |
A Oro2 orP Oro2 orP
RQN_l(RQ - Rl)(ﬁ)\QQ _a2/\0‘2+1) . (MIQ)\QQ + M22)\a2) 727[-]\[/2 .
(BAay — @2da, + 1)(T(B — ag + 1)) ['(N/2)
(185)

Proof
Based on Theorem 61, etc. =
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We finish this section with
Corollary 78 (to Theorem 76. All here as in Assumption 72,
Ag =0, Aoy = Ay, a2 =g +1). It holds

Aa
l}dxg

/ H OF f1(x) [hay | OB T fo(@) | Aoy ’ag“ F(@) | 2ay | O fol)
A Ore1 Oroatl Oroatl Orea
R2N71(R2 - Rl)(Qﬁ)\al —2a1dag —Aag +1)
X
(2621 = 201Xy = Aay + 1)(B = a)* (D(B — ag))*
2 N/2
2o 2o
[Ml L4 My 1] SV (186)

Proof
Based on Corollary 62, etc. m

5.3 Riemann- Liouiville fractional Opial type inequalities
involving several functions

We present
Theorem 79 Let

a1, €E Ry, B> ag, a0, B—a; > (1/p),p>1,1=1,2,
and let
fj € Li(a,z), j=1,.... M eN, a, z€R, a<x,
have, respectively, L, fractional derivatives Dg fj in [a, z], and let
D 7kfi(a)=0, fork=1,...,[8]+1; j=1,..., M.
Consider also
p(t) >0 and q(t) > 0,

with all

Let

Ag >0 and Mgy Aay > 0,
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such that

)\g <Dp.
Set
Pi(s) := /S(s - t)% (pt+a) VP Vgt =12, 0<s<z—a,
" (187)
s+ a) @) ) (2 () (s + a2
A(s) = » : . (188)
(LB —ar))™r (DB — az))"
z—a (p=2g)/
Ao(z — a) == < / (A(s))P/(P=20) ds> T p, (189)
0
and
Ml—((/\al-&-)\g)/P), if Aay + Mg <,
o L (190)
2T i A A >
Call
A As/p
p1(x—a) = (Ao(:c —a) /\&2:0) <)\o<1"i)\ﬂ) (191)
If Ao, = 0, we obtain that,
. M
/ a(s) (ZDglfJ(SV‘” foj(s)“) ds <
a j=1
, w (572)
Sip1(z —a) {/ p(s) (Z foj(SV’) dé‘] : (192)
a =1

Proof

Similar to Theorem 44, transfer of Theorem 4 of [3]. =
Next we give
Theorem 80 All here as in Theorem 79. Denote
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2Xa2/A8 — 1 Gif Aay > g,

53 1= (193)
1, if Aoy < Ag.
1, if Ag+Aay > P,
€ = e (194)
Mﬁ( P >7 Zf )\ﬁ+)\a2 §p7

and

p—A )‘,G/p
>2</’) (Aﬁ ) 50 (195)
O¢1:0

p2(x —a) = (Ao(a: —a) \ N 0

If Ao, =0, then it holds
x M
/ Q(S){{Z[ (D32 fia ()12 (DI f() Y+ DG2 £ ()12 [DF fia () 11+
a j=1

(103 Fa(s)2 |DEFi(s)1" + D2 fu(s) 2 |DE Far(s) | s <

(,\ﬁ+xa2 *ﬁ*kaz)
2

; )W@_a){ /xp(s)(fjmgfj(s»p)cls}( ;
a j=1

Proof Usual transfer of Theorem 5 of [3].
It follows the general case
Theorem 81 All here as in Theorem 79. Denote

(196)

2o FAa2)/A8) — 1) Gif Ay + Aoy > Mg,
L (197)
L, if Ay +Aas < A,

and

17 Zf >\061 +AO¢2+A6 2p7
Sy = (198)
1= (o FRas+A)/P) G f N 4 Ay + Ag < .
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Ag
—a) = Ag(z—
v3(x—a) o(z—a) (()‘011 + Aas) Aoy + Aay + Ag
(199)
and
17 ’Lf )\011 + )\042 + )\ﬂ Z pa
€3 = (200)
ML= (Qay+rar+25)/p) if Ay + Aaw + A5 < p.
Then
. M-1
/ )| S UDE fi()Pr 1Dg2 fisa ()2 [DEf(s) 1+
7=1

|1Dg2 fi(s)1*2 |DG* fiaa(s)r | D fiaa () 1+
[1Dg fu(s)Per |Dg2 far ()2 | D fu(s) ¥+

D2 fi(s)*2 DG far(s) P D2 fur(s)™ ] ds < (200)

Aaq +>\a2+>\ﬂ )

2(M)€3¢3(mfa {/ (ZIDﬁfJ |P)d5}< ’

Proof

Usual transfer of Theorem 6 of [3]. =
We continue
Theorem 82 Let

B>ar+1, ag € Ry
and let
fi € Li(a,z), j=1,.... M eN, a, z€R, a <z,
have, respectively, Lo, fractional derivatives Dg fj in [a, z], and let
D3 kfi(a)=0, fork=1,...,[8]+1; j=1,..., M.

Consider also
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with all
(1), = a(t) € Loo(a,)
p\t), /7,949 o \ay T
p(t)
Let
A >0, 0< Agyr1 <1, and p > 1.
Denote

2Xa/Qatt) 10 if Ay > Aasr,
O3 :=

]-7 Zf )\a S )\a+1v

@ (1-Xas1) -
L(x—a):= <2/ (q(s))(l/(l)\a+l))d8> <)W>

at )\a+1
and
Pi(z —a):= / (z — s)B=ea=p/(p=1) (p(5))~ 1/ (P=Dgg,
(A7)
T(z—a) = L(z — \r—a)) " ,
(r —a) (z a)( TG — o)
and
wy = 2<%)(>\a+)\a+1)
O(x —a) :=T(x — a)w;.
Also put

17 lf >\Oé+)\06+1 Zpu

€4 =
Ao +Ao¢+1

(5 ), if Ao+ Aas1 < p.
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Then

T M-1
/ (U 1D ) 1D fy () P+ 1D fya () [DE L (5) P+
7j=1

[1D3 fu(s)P DG far(s) Pt + DG far(s) [Dg+ fa(s) =+ ]}ds <

Aa +Ao¢+1

2(“3““)6@(;5_@[/ (Zwﬁf] \p)dsﬂ ) 0

Proof
Transfer of Theorem 7 of [3]. m

Next it comes

Theorem 83 All as in Theorem 79. Consider the special case of
Aas = Aa; + Ag. Denote

. A NN e, -
T(x —a):= Ao(z — a) <> 9(P=2Aa1 =3X3)/p (209)
Aoy + )\@
L odif 2(Aa, +As) >,

%= 2(0a; +3g) (210)

17( > 3
M r , if 2(Nar +28) <p
Then

. M—1
/ U LIDE fi(9)Pr 1DE fiaa()M1 %9 DS f(5) 7+
7j=1

1DG2 fi(s) X128 [ DS fia ()1 |DE ()] 3+
[ DG fi(s) 1 [Dg2 fag ()P |DE f1(s) M+
DS fi ()| | DS far(s) > |DE far(s))* ]}ds <

(2(/\a1+>\/5) 2(Xag +Ag)
2

z >e5f(x—a[/ (Zmﬁf |p>d5]< v ) (211)
Proof

Transfer of Theorem 8 of [3]. m
Special cases follow
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Corollary 84 (to Theorem 79, A\, =0, p(t) = q(t) = 1.) It holds

Aap A
/a (Z DG fi()r |DE f3(s)|* ) ds < 8701 (2-a) / Z[ \Dgfj(S)!p]dS]( )
= - (212)
In (212) <A0(ac —a)| > of ¢1(x) is given in Corollary 49, equation
(123). o
Proof

Transfer of Corollary 9 of [3]. =
Corollary 85 (to Theorem 79, \,, =0, p(t) =q(t) =1, 0, = Ag =
1, p=2.) In detail, let

B>ar, a1 € Ry, B—aq > (1/2),
and let
fi€Li(az), j=1,....MeN, a, z€R, a <z,
have, respectively, L, fractional derivatives Dg fj in [a, z], and let
Dg_kfj(a):O, fork=1,....[f]+1; j=1,...,M.

Then

/a (Z’Dalfﬂ HD fi(s )‘)dsg

(:c—a)(ﬂ—al) z M
2I'(B — 1) VB — \/2ﬁ—2a1—1{/a {Z D3 fi(s) }ds}' (213)

Jj=1

Proof
Transfer of Corollary 10 of [3]. m
Corollary 86 (to Theorem 80, \,, =0, p(t) = ¢(t) = 1.) It holds

o M-1
[ 1D P DL + D5 ()P 1D (s) ]+
J=1

[1Dg2 far ()2 D () + D32 fi(s) o= |DE far(s) e ]} s <
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Aptirag )

Q(W)egmx_a{/a (Zypﬂfj r)as)

In (214), <A0(aj —a)

(214)

> of pa(x —a) is given in Corollary 51, see

equation (128). 1
Proof
Transfer of Corollary 11 of [3]. m

Corollary 87 (to Theorem 80, \,, =0, p(t) = q(t) =1, 0, = Ag =
1, p=2.) In detail, let

az € Ry, B>ag, f—a>(1/2),
and let
fi € Li(a,z), j=1,.... M eN, a, z€R, a <z,
have, respectively, L, fractional derivatives Dg fj in [a, z], and let
D Ffi(a) =0, fork=1,...,[8]+1; j=1,...,M.

Then

T M-1
| AT D s P21, + 1D 1,9 1D (o)) +
7j=1

1032 far ()| 1D2 fa(5)] + D52 f1()| 1DE far(s)] ] s

V2(x — q)f—a2) x M
=TG- j(ﬁ - aQ) V2B =205 — 1 { /a [;(Daﬁfj(S))Q} ds}. (215)

Proof
Transfer of Corollary 12 of [3]. m

Corollary 88 (to Theorem 81, A\, = Ao, = A\g = 1, p(t) = q(t) =
1, p=3.) It holds

z  M-1
/ | YLD £ 1DE2 fisa(s)| 1D f(s)|+
7j=1

D22 £5(s) 1DG* f1(5)| 1D fi1()| 1+ [1DG" f1(s)] 1D fa ()] |DF f(s) |+
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D5 A D fars) 1D furs) 1] ds < 265-a)| [ (Z\Dﬁfy #)as|.

(216)
Here

P}z —a) = (ﬁ " jé) Aol — ), (217)

where in this special case

4(x — a)PPoa—az)

L(B—a1) T(B—as) [3(36 —3a; —1)(38 —3az — 1)(28 — a1 — ag) |2/3°
(218)

Ao(x—a) =

Proof
Transfer of Corollary 13 of [3]. m
Corollary 89 (to Theorem 82, \, = 1, A\o11 = 1/2, p(t) = ¢(t) =
1, p=3/2.) In detail, let
ar € Ry, B>a1+ 1,
and let
fi € Li(a,z), j=1,....M €N, a, z€R, a <z,

have, respectively, L, fractional derivatives DY fj in [a, z], and let

D3 kfi(a)=0, fork=1,...,[8]+1; j=1,..., M.

Set
38—3aq—1
N R S
v = (=) T O
Then

e M-1
[ 102560 108 a1+ 10 £y (0] 108 (9] 1)+
a j=1

[1Dg f1()] \/IDE T far ()] + DG far ()] A/ IDE T f(s)] ]}dSS
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20" (z — a) |DZ fi(s)[3? ) ds|. (220)
) Z

Proof
Transfer of Corollary 14 of [3]. m

Corollary 90 (to Theorem 83, p = 2(\,, +g) > 1, p(t) =¢q(t) = 1.)
It holds

/ {{Z D ()P D2 [y ()P [ DEf () +

D32 fi(s) 12 [ DGt figa(s)Mr DS fin(s) Jh+
[1Dg fi(s)*=1 | Dg2 far ()12 |DF fu(s) [+

D2 f1(s)*1 7% [Dg far(s) (DS far(s)* | }ds <

e M
2T (x — a) [/ (Z ]Dgfj(s)|2()‘“1+)‘5)>ds} : (221)

j=1

Here T'(z — a) in (221) is given by (209) and in detail by T'(z — a) of
Corollary 55 and equations (136)- (139).
Proof
Transfer of Corollary 15 of [3]. m

Corollary 91 (to Theorem 83, p =4, A\, = A\g =1, p(t) =¢q(t) =1.)
It holds

. M-1
| AES D 56 D2 o) D21+
7=1

(De2£i()?1D3* fiaa ()| 1DZ fraa ()| IHLIDG* fr(s)] (D52 far () | D fi(s) |+
e M
(D2 1(6))? 1D (5)] 1D ur(9)] s < 2B o) [ (So(DRA(s))" )]
a j=1
) (222)
Here in (222) we have that T'(x — a) = T*(xz — a) of Corollary 56, see
the equations (141)- (145).
Proof
Transfer of Corollary 16 of [3]. m
Next we present the L, case.
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Theorem 92 Let
aj,ae € Ry, B> ag, a9
and let
fj € Li(a, ), j=1,....MeN, a, R, a<zx,
have, respectively, L, fractional derivatives Dg fj in [a, z], and let
DI kfi(a) =0, fork=1,...,[8]+1; j=1,..., M.
Consider also

p(s) 20, p(s) € Loo(a, ).

Let Aoy, Aas, Ag > 0.
Set

[P(5)lloe (2 = @)Pe1 ~e1ho 4830z 0hog +1)

AP0 = (5= a4 )P (D — s + D)™ [Fhar — athar + By — b + 1]

(223)
Then

. M-1
/ {{Z 1D fi ()1 |Dg2 fipa ()2 |DFfi(s) M+
J=1

DS fi(s) |2 |DS figa(s)*r D2 fia(s) 13+
[1Dg fu(s)[Mr [DG2 far(s)| 2 |DE fr(s) M+

(D2 fi(s) 2 D far(s) > [DE far(s) ™ ] s

Aoy +Ag) 2Xa
<pla—a {Z{IIDﬁngoo S DRI (224)
7=1
Proof
Transfer of Corollary 17 of [3]. m
Similarly we give
Theorem 93 ( as in Theorem 92; \,, = 0.) It holds
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M

/:p(S)(Z’Dglfj(S)‘Ml |Daﬁfj(5)\/\5)d5§

=1

1(5)oo (1 — @) Por—a1da +1) o
(T(8 = a1 + 1)1 [BAay — a1hay +1] (Z” Sl). (22)

Proof
Based on Theorem 18 of [3]. m
It follows
Theorem 94 ( as in Theorem 92; A\, = A\, + Ag.) It holds

[ {{Z D3 fi(s)Pr (DG fyaa ()P DL () o+

D52 f5()P1 9 DG fra()Pr DS () 1)+
[1D5 As) P |Dg2 far(9)P1 9 1DEA()+
D52 o) (DS far(s) s (D Far(s) ] s <

< { 1P(8)]] oo
LI —a;+ 1)1 (T(8 — ag + 1)) P trs)

2z — a)(2,8>\a17a1)\a1+6)\ﬁ*a2>\a1*042)\B+1 2(Aa; +A3)
- b (ZHD%H ),
(2/8/\a1 al/\al + ,3/\[3 - ag)\al — ag)\g + 1
(226)

Proof
By Theorem 19 of [3]. =
We continue with
Theorem 95 ( as in Theorem 92; \g =0, Ay, = Ay,.) It holds

/ {{Z 1D fi(s) |21 | D22 fip1(s) M1+ D32 f(s) [ [ DO fi41(s)[ o]+

LD fu(s)Per |Dg2 far ()1 + DG fu(s) o1 | DGt far ()M }}ds

2X\ay

M
< 20" (@ —a)| Y IDIS 1% (227)

J=1
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Here we have

e bl 120

[

(26Xa; — @1Xay — agda; + D(T(B = ar + 1) 1 (D(8 — ag + 1))
(228)

o (a—a) ==

Proof
Based on Theorem 20 of [3]. =
Next we give
Theorem 96 ( as in Theorem 92, A\, =0, Ay, = Ag.) It holds

" M-1
| o {1102 a0 DL P41 (92 1D () 2]+
a j=1

[1Dg2 far(s)[2 | D fr(s) 2 +|Dg2 fi(s)2 |Dg faa(s) ]}ds <

(z — a)Praa=a2rar 1) |I5(s)| o0 o,
2 (UM — agha, + 1)(T(8 — ag + 1))\ (Z IDEF 1) (229)

Proof
Based on Theorem 21 of [3]. =

Some special cases follow.

Corollary 97 (to Theorem 95, all as in Theorem 92, A\3 =0, \y, =
)\QQ, a9 = ] + 1) It holds

T M-1
/ p(S){{ Z [ ‘Dg‘lfj(s”)\m |Dgl+1fj+1(8)|>\°‘1 +|D2‘1+1fj(s)|ka1 !Dg‘lfj+1(s)\kal]}+
a =1

1D fa(s)Por [DEFH ()1 -+ D fa(s) Por (DG far(s) P ] s <

(& — @)1 720001 Ao H (s >|roo .
’ ((2/6)\a1 — 2010y — Aoy + 1) (B — 1)1 (D(B — aq))P [Z 1Da flloo }
(230)

Proof
Based on Theorem 22 of [3]. =
Corollary 98 (to Corollary 97.) In detail, let

ar €Ny, B>a1+1

and let
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f] GLl(CL,.’I}), jzla"'7M€N7 a, z €N, a <uw,
have, respectively, L, fractional derivatives D fj in [a, z], and let

D3 kfi(a)=0, fork=1,...,[8]+1; j=1,..., M.

Then

T M—-1
[ AES DR B P Ly 9]+ 1D fya ()] DT 15 11+
7j=1

[ 1D f1(s)| 1D far ()] + 1DG* far ()] 1 DG fa(s)] ]}ds <

(x —a)?Fo) Be 2
B TG (Z ID21i1Z). (231)
Proof
Based on Corollary 23 of [3]. =

Corollary 99 (to Corollary 98.) It holds

z M — (ﬁ al
AR O e e (ZHD%W )
(232)
Proof

Based on inequality (155) of Proposition 64. m
Next we apply previous results of this subsection on the spherical shell

A.
We make
Assumption 100 Let

a1, Q2 € §R+7 /8> Qaq, a2, B_a’b > (1/p)7p> 17Z: 1727

and for j=1,..., M, M € N, let f; € L1(A) with

on, fi(2)

58 € Lo(A), z € A,

A:=B(0,Ry) — B(0,R;) CRY, N>2 0< Ry <Ry.
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Further assume that each Dgl fi(rw) € R for almost all r € [Ry, Ry],

SNfl

for each w € , and for these

DY fi(rw)| < M;

for some M; > 0; j =1,..., M. For each w € SN~1 — (U jj\i K(fj)), we

assume that f;(- w) has an Lo, fractional derivative Dgh fi(- w) in [Ry, R,
and that

Dy Ffi(Riw) =0, k=1,....,[8] + L;

Jj=1,..., M. Let \g > 0 and Ay, Aa, = 0, such that \g <p. If a1 =0
we set Ao, = 1, and if ay = 0 we set Ao, = 1.

We need

Notation 101 (on Assumption 100.) We set

s p(Ba;-1)
B(s)::/(s—r) p-1 (T+R1)< )dr i=1,2, 0<s< Ry — Ry,
0

(233)
sy o LG (e () (o)
(T(B =)™ (I(B — ag))™
and
Ra—Ra (p—Xg)/p
_ — )P/ (P=25) 4

tolte—m)i= ([ Gy as) L e

We present

Theorem 102 (All as in Assumption 100 and Notation 101). De-

note
I

Let Aoy >0, Ao, =0and p= Ay, +Ag > 1. Then

[ R

01(Ro — Ry) == <A0(Rz - Ry)

Xay
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©1(Ry — Ry) [/(Z‘%g{fg ‘ > :c} (237)

Proof
Based on Theorem 79 and similar to the proof of Theorem 67, notice
here )\SN_l(Uj]VilK(fj)) =0. =

Next we give

Theorem 103 (All as in Assumption 100 and Notation 101). We
denote

22a2/A8 — 1 Gif Aoy > Ng,
by = (238)
1, if Aoy < Ag,

and

Aa (As/p)
X 0) o5 2)(“) 50 (239)
a1 =

pa(Ro — Ry) := (AO(RQ - Ry) )

Here Ao, =0, Ao, >0 and p = Ag+ Ay, > 1. Then

/ {{z |l

{ ‘ O fu(x)

Oraz

AQQ A‘3‘2

op, f(@) | N | %2 f;(x)

op, fis1(@) ‘ )‘B} -
orp Oraz

orP

Aag Aag

y f1(z) lxﬁ . ‘ 0% fi()

8
P o I Il) ’Ag]dx} -

orp

s [ (55| Yue].

Proof
Based on Theorem 80 and similar to the proof of Theorem 67. m

It follows the general case

Theorem 104 All as in Assumption 100 and Notation 101. Here
Aars Aag >0, 0= Aa; + Aoy + Ag > 1. Denote

2((ea FAa2)/A8) — 1 Gif Ay + Aoy > Mg,
. (241)
L, if Ay +Aas < A,

and
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N (Aa/p) )
putls= ) = Aol ) (B ) ) e e G )
a1 as

(242)
Then
/{M 1[‘8a1f] Aay MAQQ (’W‘)\g
Oron ora2 orB
7j=1
o) e ) DiSyia(o) e ) O Lieala) o
37“0‘2 67‘(11 87‘6
Orat Oraz Orp
() v O fle) | Ot o
aTQQ 87“0‘1 87‘ﬁ
a, fi(x
< 2¢3(Ry — Ry) [/(Z‘ Rérjﬂ ‘ ) x} (243)
Proof

Based on Theorem 81 and similar to the proof of Theorem 67. m

We continue with

Theorem 105 All as in Assumption 100. Here g = a1 + 1, Ay :=
Aoy =0, Aot1:= Aoy € (0,1) and p = Ay + Aoy > 1. Denote

2()\Q/A(¥+1) -1, Zf Ao > )\a-‘rlv
6, i (244)
1, if Aa < Aatt,

Cag g 1-Xat1) Aa
L(R2 R]_) — |: (1 B )\O{+1) (RQ ]f*;aj:ll — R]. 1;]7:\05:11 ):|( i <03 >\a+1) 1 ,

(N = Aa+1) p
(245)
and
Ro
PRy — Ry) = / (Ry — 1) (B=1=0p/=1) L(1=N)/(0=D) gy (246)
Ry
and

83



®(Ry — R1) := L(Rs — Ry) <(P1(R2 - RlW“) 2(-1) . (247)

(T3 — 1))
Then
8%1]0] 8“1+1fg+1() Aat1 8%1fj+1(x) 8%1+1fj(x) Aa+1
/{{Z H ore Oroatl +‘ ore1 Oroatl ]}
O fr(@) |2 | 05T far(@) (et | OF far(2) OB F1(2) | Aar ;
H [T | [T | T grai+1 | e
0
< on(r - Ry [ (Z\ O (o) |y 249

Proof
Based on Theorem 82, similar to the proof Theorem 67. =

We also give

Theorem 106 (All as in Assumption 100 and Notation 101). Here
Aoz = Aa; + Ag and p = 2(A\y, + Ag) > 1. Denote

~ 92 As/p
T(Ry — Ry) := AO(RQ—R1)< 25) 27 No/P, (249)
Then
/{{M ! Haj'%fg( T) Aoy | O fi41(2) | Aoy +As ‘91§1fj(l’) ‘Aﬂ
4 U & oro Oro2 orP
7j=1
‘azifm Moy s ‘a;ﬁfm(x) Ny aﬁlfm(@‘xﬁw
Oro2 Oro orP
H@%ﬁ(m) Ny | DR S () | der s ’aﬁlfﬂm‘xﬁ
Oro oro2 orP
‘ayg F1(Z) | Aay A5 ‘ag Far(@) | Aay | O, fM(:C)‘)\ﬁ}}dl‘
Oraz Orat orp
N 92 fi(x
ot | [ (55 07 ) ] g
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Proof
Based on Theorem 83. m

Next we give Lo, results on the shell A involving several functions. We
make

Assumption 107 Let

at, a3 € Ry, B> ar, a9
and for j=1,..., M, M € N, let f; € L1(A) with
O, F()
ors

A:=B(0,Ry) — B(0,R;) CRN, N>2, 0 < Ry < Ry.

€ Loo(A), z € A,

Further assume that each Dgl fi(rw) € R for almost all r € [Ry, Ry,
for each w € SV~1, and for these

DY fi(rw)| < M;

for some M; > 0; j =1,..., M. For each w € SN=1 — (Uj]\ilK(fj)), we

assume that f;(- w) has an Lo, fractional derivative Dgl fi(- w) in [Ry, R,
and that

Dy fi(Riw) =0, k=1,....[8] +1;

J=1,..., M. Let Aoy, Aoy, Ag > 0. If oy = 0 we set Ao, = 1, and if
ag =0 we set Ay, = 1.
We present

Theorem 108 All here as in Assumption 107. Set

R2N71 (R2 _ Rl)(ﬁAal _al)\al +ﬂ)\a2 _012>\o¢2 +1)

p(Re—Ry) = .
(Re—I) (T(B— o1+ 1)1 (D(B — ag + 1)) 2 (B, — a1Aa, + B(AQQZ )_ 2y + 1)
ol
Then
(O R | i) | )
oret ore2 87”/8
7=1
ore2 oron OB
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orea Oro2 OB
‘%ﬁ(x) v | Gule) e O ule) oy
ore2 orao1 OB
27 V/2 M 2
< (Aag+2g) 2Xa
= v {; ) e ] (25)

Proof

Based on Theorem 92, similar proof as in Theorem 73. =
Similarly we give
Theorem 109 All as in Assumption 107, \,, = 0). Then

/ [Z ‘ D% fi(x) Aoy | O, f(2) ‘Aﬁ}dw g
8r°‘1 orP -
RyN "N (Ry — Ry)(PAe1 —a1dar +1) ZM e tig) | 272
(P(B — a1+ 1)1 [Bha; — arda, +1] I'(N/2)
(253)

Proof
Based on Theorem 93, similar to Theorem 73. m

It follows

Theorem 110 All as in Assumption 107, Ay, = Ao, + Ag. Then

{{MIH R i (@) Par | O Fia (@) A lﬁﬁlfm)‘w
ral ore2 orP
7j=1
| Gs(e) 2eao ) Oifienle) e ) O fina(o) oy
Oro2 oret orp
| T o | Bl e )
oron Oroz orB

Aoy

‘ Iz fi(z)

il Moy +As ‘a;g fu (@) 0, far(z) ‘Aﬁ}}dxg

orat ors
RQN_l(RQ _ Rl)(QB)\al—al)\al—i-ﬂ)\g—ozg)\al —azAg+1)

(T(8 — a1+ D)1 (T(8 — az + 1)1 7928, — arha, + BAg — azda, — ashg + 1]
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M
471_N/2
2(Aay +Ag)
ZMJ 1 N7k (254)

Proof
Based on Theorem 94 and similar to the proof of Theorem 73. m

We continue with

Theorem 111 All as in Assumption 107, here \g = 0, Ao, = Aq,-
Then

M-1

O fi(x) | Xay | OR2 fi41(2) [Aar | OF2[i(®) | Ay | OR) fi1(T) | Aoy
RO e e e B R e N
= orat Ore2 oroz orat
H 3%1 fi(x) [ Ay a%ifM(:L') Aay ‘ 6}’§f1(x) 8%1]”]\4(‘%) )\ali| }d$ < A N/2
Ooret ore2 oraz oret — I'(IV/2)
- —Q1Aq] TA2Ax M
RoN"Y(Ry — Ry)(2Aar—a1da; —a2da; +1) ZszAal
(F(ﬁ — (X1 + ].)F(ﬂ — (9 —+ 1)))‘041 (26)\a1 — Oél)\al — OéQ)\al + ].) j=1
(255)

Proof
Based on Theorem 95. m

Next we give

Theorem 112 All as in Assumption 107, here A\, = 0, Ao, = Ag.
Then

/ {{Ml H O fi1(@) | hex | O, F5(@) Aa2+‘ 032 £(x) | Maz | O Fia (@) AQQ}H
A ore2 orP Oro2 orP
[ O, S1(2) oy | @) 2 On, () Y < A
Ora2 orP ora2 orB - T(V/2)
R2N_1(R2 - 1%1)(ﬂ)\062 —02hag +1) i M 2 (256)
2Aag |
(BAaz = a2Xay + 1)(L(B — ag + 1)) e j=1 !

Proof
Based on Theorem 96. m

We finish this section with a special case.

Corollary 113 (to Theorem 111) All as in Assumption 107, here
Ag =0, Aoy = Aay, a2 = ag + 1. Then
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Yo | O fia ()

Oroitl

Aoy

IR, fi+1(x)

orol

ai+1 g
Aa1+’aR1 i)

Aoy
oroatl } I

M-1 1
RO

J=1

% 1+1fM( )

Oroat+l

gt fu ()

Orat

H Iy f1(z) (A

- a;‘g“fl(x) A
Or™ +‘

Aoy 47 N/2
groatl ]}dw =

— I'(N/2)

RoN7H(Ry — Ry)(Prer =201 a1 =Aay +1) - M2
Ravet
(25)\041 —2a1da; — Aoy F 1)(5 - 041)/\&1 (F(ﬂ - al))Z)\al Z !

j=1
(257)
Proof
Based on Corollary 97. m
We finish the article with the proof that D®f of Lemma 7, see (8),
also other similar fractional derivatives here, are such that

Def € AC([0,z]) for f—a>1
and
Df € C([0,z]), for B—a € (0,1).

The last derive from the next
Proposition 114 Let r > 0, F' € Ly (a,b) and

Gls) = / (s — O Bt (258)
all s € [a,b]. Then '
G € AC((a.b) forr > 1
and
G € C(la, ), only for r € (0,1).

Proof
1)Case r > 1.

We use the definition of absolute continuity. So for every € > 0 we need
0 > 0: whenever (a;,b;), i = 1,..., n, are disjoint open subintervals of
[a, b], then
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n

(b —ai) <8 = ) |G(b) — Glai)| < e.

i=1 i=1

If |[Fllso = 0, then G(s) = 0, for all s € [a,b], the trivial case and all
fulfilled. So we assume ||F'||o # 0.
Hence we have

Glbs) — Glag) = / " by — O (1) — / (4 — ) F(t)dt =

i

/ (b — oy () / (s — 7 R () + / " b=ty P (2t

[ @ oy P [ P o5
Call
L= / b — 07 = (as — 1)L a. (260)

Thus

bi — ai)"
60 - Glal < |1+ O ] Pl o
If r =1, then I; =0, and

G (bi) — Glai)] < [[Flloo(bi — ai), (262)

foralli:=1,...,n.
If r > 1, then since [(b; —¢)" ! — (a; —t)""'] >0, for all ¢ € [a, a;], we
find

(bi — a)T — (ai — CL)T — (bz — CLZ‘)T

I = /a (i =)t = (a; — )" ) dt =

,
— V" Yh — a0 — (b — a:)"
= rg-a) iz a) = (i —a) , for some £ € (a;, b;). (263)
,
Therefore, it holds
— V" Yh —a))— (b — a:)"
Iiér(b a)" (b — a;) — (b az)’ (264)

r
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and

<IZ- + (b—a)> < (b—a)" b — a).
T
That is
T; < || Fllso(b—a) (b — i),

so that

|G(b;) — G(a3)] < || Flloo(b—a) " (b; — a;), foralli=1,...,n

So in the case of » = 1, and by choosing § := IFglloo’ we get

n

Z G (bi) — Glai)| <P || Fllo (Z(bi - ai)) < Fllocd = €,

i=1

(265)

(266)

(267)

proving for r = 1 that G is absolutely continuous. In the case of r > 1, and

by choosing § := W, we get

Z!G a;)] < | Flloo (b — a)™! (Z(biai)>

=1
< [[Flloclb— a) ' = c,

proving for » > 1 that G is absolutely continuous again.
2) Case of 0 < r < 1. Let a;,, b;, € [a,b] : a;, <b;,. Then (a;,
(b;, —t)""L, for all t € [a,a;,]. Then

Ii* = / § ((al* - t)ril - (bz* - t)Til) dt = M

r

)
r r

<(% —a)" — (bi, — a)r> < i —ai)"

by (a;, —a)" — (b, —a)" < 0.
Le.

_t)’r“—l >

(268)

(269)

(270)



and

T, < 2(b;, —ai,)"

* —

[ loo (271)

proving that

r

|G(bi,) — Gag,)| < <2HF”°°> (bi, —ai,)" (272)

which is proving that G is continuous.
Taking the special case of a = 0 and F(t) = 1, for all t € [0, b], we get
that

r

G(s) =2, all s €[0,b], for 0<r<1. (273)
T

The last is a Lipschitz function of order r € (0,1), which is not ab-
solutely continuous. Consequently G for r € (0,1) in general, cannot be
absolutely continuous. That completes the proof. m
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